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Abstract: The light scattering by a spherical particle with radial
anisotropic permittivitye and permeabilityu are discussed in detail by
expanding Mie theory. With the modified vector potential formulation, the
electric anisotropy effects on scattering efficiency are addressed by studying
the extinction, scattering, absorption and radar cross sections following
the change of the transverse permittivity the longitudinal permittivity

& and the particle sizg. The huge scattering cross sections are shown
by considering the possible coupling between active medium and plasmon
polaritons and this will be possible to result in spaser from the active
plasmons of small particle.
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1. Introduction

Controlling light energy into nanometer scale is one of the rapidly growing fields of mate-
rial physics and nanotechnology[1, 2, 3] which hosts a lot of important research directions
with potential applications such as high-resolution optical imaging[4, 5], small-scale sensing
techniques[7, 8], and numerous biomedical applications[9, 10, 11, 12]. Presently, designing
the metal/dielectric interface with the use of surface plasmon polaritons is considered to be
an effective approach of manipulating light on nano scale. With the isolated small metal par-
ticle, the local electromagnetic field can be enhanced by the surface plasmons localized on
the surface and thus be utilized to enhance Raman scattering[13, 14], fluorescence of single
molecule[15, 16] and transfer resonantly the energy of exciton[17], and so on. With design-
ing the proper periodic pattern on metal materials or the interface of active medium, dielec-
tric and metal, the different plasmon modes can be hybridized and tune the resonance fre-
qguency for guiding electromagnetic wave on nanosized structure[18, 19, 20, 21] and lasing of
semiconductor nano particle or fluorescence molecules in dielectric media with assistance of
plasmons[22, 23, 24, 25, 26, 27, 28, 29]. Therefore, the anisotropic materials or designed meta-
materials with anisotropy have been a subject of great interest, since the merging of plasmonics
and these materials may open up a new perspective to control the electromagnetic wave, such
as the achievement of negative index metamaterials in the optical frequencies[30].

Prodaret al. have studied the plasmon hybridization of complex nanoshell structures with a
metallic shell and a dielectric core[31, 19]. The interaction of bare plasmon modes of individ-
ual surface is demonstrated. Furthermore, Bergetaal. predicted that the surface plasmon
can be amplified by stimulated emission of radiation and thus result in lasing with the gener-
ator of coherent surface plasmons[27]. Recently, it was experimentally demonstrated that the
spaser is realized on a conjugate structure with a metallic core and a dye-doped dielectric shell
which is as an active medium to overcome the inherent loss of surface plasmon inside metal
core[28]. In this paper, we study the fancy effect of light scattering on the small particles with
radial anisotropic permittivity. Some progress has been made in this direction about spherical
anisotropic structures[32, 33, 34, 35, 36, 37, 38, 39]. The method of moments, coupled-dipole
methods, second-harmonic generation approach and expanded Mie theory have been devel-
oped to expand the field expressions[32, 33, 34, 36]. Some new effects of light scattering by
anisotropic materials, such as the additional increase in field enhancement near surface plasmon
resonance frequencies induced by anisotropy, have been analyzed[39]. Here, with modified Mie
theory, we will analyze the space of parameters including the transverse pernsttithity lon-
gitudinal permittivity &, the particle sizea and wavelength of incident wave. We consider
the anisotropy of permittivitg results in the spherical particles have different properties in dif-
ferent directions, such as metallic property and light-active dielectric property. The huge light
scattering is found in special region of parameter space after inspecting the extinction, scat-
tering, absorption and radar cross section. This fantastic effect is suspected to be due to the
coupling between active medium and plasmons and be possible to result in spaser.
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2. Theoretical model

Different analytical methods have been developed to deal with the light scattering with medium
with different structures[40, 41]. For planar multilayered structures, the 3D Fourier transform
technique was usually used to relate the space and spectral domains to the analysis of the
waves and fields[42, 43]. For the boundary-value problems and periodic structures, the Green’s
functional technique as a kernel is used to solve the integral equation[44]. For the spherical and
cylindrical structures, the Lorenz-Mie approach is a powerful method of separation of variables
to expand angularly the electromagnetic field[45, 46, 47, 48, 49]. Here, we chose to modify the
Mie theory to deal with the particle with radial anisotropy[38, 40].

We assume that the plane wave with the electric field polarized alongpttie is scattered by
the particle immersed in homogeneous medium. Considering the scattering about monochro-
matic wave, the time dependene@® part can be suppressed and the electric and magnetic
vectors satisfy the time-free Maxwell’s equations:

OH = —ikoe- E andOE =ikou- H, (1)

wherekg is the wave vector of light in vacuum. The uniaxial anisotropy of particle is defined
by the constitutive tensors of the permittivity and permeability as:

EI’ O O IJr O O
e=| 0 & 0 | andu= O u O (2)
0 0 & 0 0 Ht

where the coordinate system is spherical coordinate ggred, i and i are the longitudinal
permittivity, transverse permittivity, longitudinal permeability and transverse permeability, re-
spectively. In general case, these four valaess:, p and py; will be complex numbers, i.e.

& = Rek ] +ilm[g], & = Rek] +ilm[g], etc. As usual, the electric and magnetic vectors can
be expressed by the Debye’s scaler potenfikls andMry. Thus, the Maxwell vector equa-
tions are transferred as the scaler equations about the magreténd electrid 11y potentials,
which are expressed as:

idznTM+ 1 i .edI'ITM I 1 dZI'ITM
& Or2 r2sin@ 46 06 r2sinf@ d¢2

Ur 02|_|TE 1 17} . 0N+ 1 & MNye
( in@ 50 +r23|n26 392 + K& Mg =0, 4

+ K& i Mm = 0, ©)

L dr2 ' r2sing 9o

for the scattering by particle with anisotropic permittivéyand permeabilityt. Solving these
equations with corresponding boundary conditions, the scattering ampliitigsctric) and
B/"(magnetic) can be found to be as:

Bf = '+1I?II+1)beandB| = |+1|?||111) i (5)
with,
b — Va®P| (koa)®y, (ka) — /I P (koa) Py, (ka) ©)
' VEE (ka)dy, (ka) — /& (koa) P, (ka) ’
o VEaD (koa) Py, (ka) — /T P| (koa) Py, (ka) Ko
' V&G (koa)®, (ka) — /& (koa) Py, (kia) ’
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wherek; = ko,/& [k is the wave vector in anisotropic spheres. the functibr() andé; (x) are

given by
D (x) = \/?Jpr% (%), (8)

60 =) % (3500 +iNy, 5 ) ©

whereJ (x) andN; (x) areusual Bessel function and Neumann function. The ovgandv, of
the spherical Bessel functish,, and®,, are:

B g 117 1
Vi = [|(|—|—1)8r+4} Y (10)
and 12
_ He _1
Vo = [I(I +1) +4] > (11)

With the solution aboullyg and M1y, we can analyze the distribution of electromagnetic
fields around the particle. The lost of total energy from incident wave and the energy flux due to
backscattering from the particle can be also analyzed. With optical cross-section theorem, the
forward scattering amplitude can be evaluated by extinction, scattering and absorption cross
sections. The backward scattering amplitude can be evaluated by radar cross section. For the
convenience of discussion, the dimensionless cross sedfidasntroduced by the formula
Q = 0Osc/ 0geom Whereaog. is the optical cross-section of the particle amyg@om= ma? is the
geometrical cross section with the radauBy the scattering amplitudég andb(", the dimen-
sionless extinction, scattering and backscattering cross section can be expressed as:

Qext = k(2)22 Z(ZI +1)Rebf +b"),

Qsea i 20+ 1) [JbF 2+ |6,
1 _|e - ?
Qrbs: @Re l;(_l)l (Zl + 1) (ble - blm) (12)

With the extinction and scattering cross section, the dimensionless absorption cross section can
be defined by the formul&aps= Qext— Qsca FOr discussing the light scattering due to surface
plasmons, the scattering amplitudes in equ.(6)and(7) can be expressed in a more convenient
form:

e _ Fbe(l) m__ Fbm(l)
o Fe() +icg() ndb - R +iGR()’ (13)

with,

Ry = V&®| (koa)®yi(ka) — /1 P (koa) Py (kea),
G = Vax (koa)®yi(ka) — /I Xi (koa) Py (kea),
(
(

=
2

Ry = a P (koa)Plp(ka) — /H P (ko) Pz
Gp = \/Etx| (koa)®y5(ka) — /H x| (Koa) Pz

wherex(x) = /5N, 1 1

—~

kia), (14)
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3. Resultsand Discussion

The special properties of surface plasmon are expected to exist in the anisotropic materials.
Since the electron collective movements are shown clearly in metal, let us consider firstly the
strange effect in small isotropic metallic sphere. The relative dielectric permittivity in the Drude
model is described as:

2

W .
&p=1 pWItho.b:(

WP Fiyw (15)

nez 1/2
Somo> ’
wherewy, ¥, n, e mp andgp are the plasma frequency, frequency of electron collisions, concen-
tration of electron, charge of electron, mass of electron and vacuum permittivity, respectively.
Obviously, the value is complex, i.ep = Refp]+i Im[ep]. Here,wy, exhibits the properties

of bulk plasmons. With the decrease of size, the new plasmon modes, surface plasmons will be
possible to be excited. The nondimensional quargity a,/emko, can be as size parameter to
analyze the scattering effects with the radius of the spherical paatésid the dielectric permit-
tivities of mediagy,. At smallq, the electric dipole scattering plays the dominant role. the scatte-
ring from the magnetic amplitud®§' can be also neglected. Now we consider the case which is
far from the resonances. The amplitusfeof electric dipole can be approximately expressed as

(—2i/3)25q°. This results in classical extinction efficien®f.; (~ §|2-3 °q*) of Rayleigh
scattering. It should be noticed that tQ8..; has a singularity a¢p = —2. Therefore, with ne-
glecting the frequency of electron collisions=€ 0), it is obtained that the resonance frequency
of dipole surface plasmomyp = wp/\@. By introducing normalized frequenayk = w/wsp
and normalized collision frequengy = y/wsp,, the Drude dielectric permittivity can be rewrit-

ten as:

ep=1— zi + iB 5 .
WRHYR  WRGWRTIR

For the cases of weak dissipatiom € [10~1,107%]), the imaginary part of dielectric permit-
tivity Im[e] will be less than @. In the process of deducing Rayleigh formula, Efgl) in
denominator part obf is ignored, relative tasg(l). However, for the case which is near the
resonances (§%l) — 0), theFS(1) will can not be ignored. Actually$(1) corresponds to the
radiative damping as shown in Refs.[50, 51]. With the consideration of radiative damping, the
singularity of Rayleigh extinction efficiency will be disappeared. Meanwhile, a series of sur-
face localized electromagnetic modes with the resonance frequengiBg~ /31/(21+ 1))
appear in the formula for small particle. This means the surface plasmons will be possible to be
excited when the condition (Rg] < —1) is satisfied for the real part of dielectric permittivity
Rekp] of the particle.

Under the nondissipative limit (Ireh] = 0), the resonance extinction cross section from
small particle increases with increase in the order of the resonance modes, as shown in Ref[50].
However, in the real metal materials, the different dissipative mechanisms, such as the electron-
electron collision, electron-phonon coupling and electron-defect interaction, will result in the
damping of the collective moving of electrons witin[ep] > 0. With the weak dissipative
damping, the resonance frequencies are not changed obviously, whereas the extinction cross
section of each resonance modes will decrease quickly. As shown in Fig. 1, the decrease of the
cross sections of higher order modes is quicker than that of dipole resonance cross sections.

For the particle sizg < 1 with Im[ep] > 0.07 at each resonance frequency, the dipole reso-
nance becomes greater than that of the higher order modes, such as quadruple. For an example,
the dipole resonance of the particle with sige- 0.5 becomes the dominant resonance mode
when the image part of permittivitss is larger than @2. The quick decrease of cross section
of high order resonance modes may be attributed to their relative small characteristic widths. As

(16)
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Fig. 1. The maximal value dDe for each resonance mode as a function of the dissipative
dampinglmiep] for the sizeq =1 (A) andq = 0.5 (B). TheQext as a function of both
frequencyw andIm[ep] for dipole and quadrupole modes of the particle with sjze 1
shown in the inset of (A).

we known, the natural width of the arbitrary resonance is given by the following expression[50]:

B q2I+1(| +1)
W= 1@ = D 2(dep/dw)

(17)

where the derivativédep /dw)' is taken at the corresponding resonance frequeney .
There is an extremely sharp decreasg with the increase df. At the same time, the charac-
teristic widthy will increase and the different resonance modes become to incorporate, follow-
ing the increase of sizg. As shown in the inset of Fig. 1A, the incorporation between dipole
and quadruple resonances induces that the quadruple resonance still holds an important rule in
scattering process evenlat[sp] = 0.3 for the sizeg = 1. Whatever, we can find that the dipole
resonance mode should be considered to be as an important role for the application of surface
plasmons.

Since the small size is more effective for the surface plasmons as found in Fig. 1A and B, we
will detect the giant resonance cross section in the size rang4 1 for the small metal sphere.
As the result of Rayleigh formula, the dipole scattering section increases quickly follewing
reaches asymptotically the singular valu@ (in Fig. 2A) under the nondissipative limit, while
the sizeg arrives at the limit value 0 from Mie theory as shown in Fig. 4A. With the dissipative
damping, the resonance frequency of the maximal resonance cross section will have a large
change, though the resonance frequency is just with an inconspicuous change by following the
increase ofm(ep] at fixed sizeg. As Fig. 2A shown, the maximal resonance frequency has a
red-shift with the decrease of the maximal cross section as a functlom&f]. This means the
maximal resonance scattering should be appeared on a particle with a limited small size and
not on a particle witlg — 0.

Near plasmon resonance frequencies, the anisotropy of permittivity can lead to an addi-
tional increase in field enhancement has been shown. In Fig. 3A, the maximal scattering sec-
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Fig. 2. The maximal value deq as a function oRekgp] with differentim[ep] (A), the

maximal or minimal values oQsca andQaps as a function ofm[ep] with Regp] = —2.2
(B), maximal value ofQex: as a function ofm[g;] with differentRef;] and the ratice /&
(C and D).
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Fig. 4. Log[Qxt] as a function of permittivitegp and sizeg under the nondissipative limit
(Im[ep] = 0) (A), the maximal value of Log[g as a function oRegp] andIm[ep] (B),
the maximal value of Log[Q4 as a function ofm[e;] and the ratide;|/|& | for Ref] =
—2.5andg = (—2.5+1 Im[&])|&|/|&|(C), Log[Qscd as a function of the ratiet|/|& |
and sizeg for & = —2.5—0.liandg = (—2.5—0.1i)|&]/|& |(D).

tion Qmax extas a function of botfs; andeg; /¢ is demonstrated under the nondissipative limit
(Im[&] = 0 andIm[g] = 0). It can be found that the maximal value Qfax ext Will exist at

the relative small ratio of; to & with the decrease ;.. Since the scattering efficiencies are
inversely proportional tof?, the change 0Qmax extfollowing the change of the ratig /& may

be due to the shift in the resonance positions. As Fig. 3B shown, the maximal v&dg isfat

the small sizeg with the decrease of the rat&/ ;. Furthermore, th€ey: also increases with

the decease af and increase of; at fixed ratiog; /& = 0.75 shown in Fig. 3C. Therefore, the
enhancement of resonance scattering efficiencies can be attributed mostly to the decrease of the
sizeq.

As we shown, the resonance scatting section decreases quickly with the enhancement of
the dissipative damping. If an assumed active mechanism with the negative valogsgiris
introduced, whether the scattering efficiency can increase need to be checked further. In Fig. 2B,
the resonance cross sections of scatteringa(Qcq and absorption (Rn absOr Qmax abg as the
functions oflm[ep] with the fixedReEp] (= —2.2) are analyzed. we find th&max scahas a
maximal value at the point withm[ep] = —0.05. At the same time, there is a minimal value
for Qmin abs It is well known that the absorption is attributed to the dissipative damping. With
the decrease df|ep], the efficiency of absorption decreases, whereas the resonance scattering
cross section increases. Thus, there is a maximal valu®4qrat special point ofm[ep]. At
the limit of small size parameter, the maximal valueQahsis given byQl, . .= q—lz(l +1/2)

[52]. Then at the nondissipative limit, the absorbtion cross sectigps@ill become zero.

The negativeQsca at the negativémiep] means the particle can emit light with some active
mechanism. Therefore, the minimal value@fin apsat Im[ep] = —0.05 means there is light
emitting with special resonance mechanism. In Fig. 4B,@hgx sca@s the function of both
Rekp] andImlep] is shown. It is found that the maximal resonance scattering cross section
exists with the more negative valuelofi[¢p] for the smalleRep]. In Fig. 2 C, D and Fig. 4

C, we demonstrate that the anisotropy of permittivity with different negative image part may
result in the more large resonance cross sections of scattering and emitting. In Fig. 4D, we
found that the giant resonance cross section is located at the region of special particle size.

In practice, the active metal is impossible to exist, since the overlap of valance band and
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Fig. 5. the resonance cross section Logkas a function of transverse permittivity (R
andRek]) with the fixed longitudinal permittivity, = 2.5—0.05i(A), the maximal value
of scattering amplitudg$| as a function oRef] andim(g] with the fixede; = 2.5—0.05i

(B).

conduction band at the Fermi level will result in an impotent radiation transition for any visible
light and the energy gain from the model of absorbtion-emission can not be realized. However,
if the dielectric or insulate , such as silica, is introduced in the system, the light absorbtion-
emission model can be used to be as the mechanism of energy gain. Therefore, the active
mechanism can be introduced by the anisotropic permittivity gyit & for the active medium.

Then it is expected that the light gain can be coupled with the collective moving of electrons
from metal. The giant resonance cross section for light scattering and adsorption (or emission)
will be possible to be obtained.

For the metal particle, the giant scattering resonance cross section due to the surface plas-
mons is localized at the small size with< 1. For dielectric particle, there isn't the ability to
trap the electromagnetic field which results in the scattering cross section is small in the nano
size for visible light. Since the surface plasmons mechanism is more effective for small size,
we will limit the size of the anisotropic spherical particle in the region ef @< 2. As Fig. 5A
shown, the maximal value @sc,is as a function oRefg] andIm|g] with fixed longitudinal
permittivity & = 2.5— 0.05i. We can found that there is a region witlef;] ~ —1.8 for giant
scattering cross section duo to the resonance. It is known that the resonance from the electric
dipole mode needs < —2 for metal particle. Therefore, it is possible that there is a relation
for both & andg in the region of resonance. It is also found thate;| is less than @5 for
the region of resonance. It seems that the energy gain from the active dielectrig partigt
be larger than the dissipative damping from the metal ggytf¢r the giant resonance cross
section.

Is it possible that the giant resonance cross section is from the contribution of different scatte-
ring modes? After the analysis of scattering cross section, it is found that the electronic dipole
mode is the major contribution for the special anisotropic particle with the sizegG< 2.

In Fig. 5B, the absolute value of the scattering amplitbfiérom electric dipole mode as a
function of Rek;] andImlg] with fixed longitudinal permittivitys; = 2.5— 0.05i is shown. It
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Fig. 6. the maximal value of scattering amplitut€| as a function oRef;| andRef]
with fixed Im[g ](= —0.05) andim|g](= 0.008) forg; as active medium (A), with fixed
Im[&](= 0.001) andm[g](= —0.02) for & as active medium (B).

demonstrates the major contribution of electronic dipole mode. Therefore, it is considered that
the electronic dipole mode will be possible to be the effective major mode to couple with the
active medium for the particle with size9q < 2. Firstly, the longitudinal permittivity, as
the active medium is considered to be contributed to the the giant scattering cross section. In
Fig. 6A, |bf .4 as a function oReE;| andRek] with fixed image partsml[e;| = 0.05 and
Im[&] = —0.008 is shown. Obviously, there is a quasi-linear region for the resonance cross sec-
tion. By fitting the extremum ofb{ ./ aboutRek;] andRek], we find there is a quasi-linear
relation (Reé] = —2.62+ 0.608Reé;] — 0.110Ref; ]2 + 0.008Reé; |* ) for resonance region.
Secondly, the transverse permittividyis considered to be as the active medium for the giant
scattering cross section. In Fig. 6[B{ . as a function oRek;| andRek] with fixed image
partsim[g;] = 0.001 andimg] = —0.02 is shown. It is found that there is also a linear rela-
tion aboutRek; ] andRef] for the resonance region. By fitting the value|lof .../, the linear
relation,Ref] = 0.389— 0.154Re¢ ], is found.

With the relation about the real parts of bathandg;, we can detect the dependence of the
size about the resonance cross section in the resonance region in detail. From Fig. 7A and B,
it is found that the size for resonance cross section changes with the real part of permittivity.
Furthermore, by the relation &ef;] andRef], the size is more dependent to the permittivity
with the dielectric property. Then we can explore the dependence of resonance cross section
to the dissipative damping from metal and the gain energy of active dielectric. Considering
the weak dissipative limit, we just analyze thalg] or Im[g] in the region[0,0.3] for the
damping. As shown in Fig. 7C and D, there is the special relation bewteles andlm|e;] for
the resonance process. It gives us an amazed conclusion that it is not the case that larger energy
gain results in a stronger coupling to surface plasomons and then a larger resonance cross
section. In additional, with the special ratio lofijg;] andImle;], there are the giant resonance
cross sections, such as for backscattering shown in Fig. 8. The giant cross sections should be
attributed to the the resonance of electric dipole mode with the assistance of gain energy from
the actives; or & and this maybe result in spaser.

#136010 - $15.00 USD  Received 4 Oct 2010; revised 28 Oct 2010; accepted 28 Oct 2010; published 12 Nov 2010
(C) 2010 OSA 22 November 2010/ Vol. 18, No. 24 / OPTICS EXPRESS 24878



(A)

01 02 03 01 02 03
Im[E,] Im[£, ]

Fig. 7. the scattering amplitudeog(||] as a function ofRef;] and q with fixed
Im[g&](= —0.05) andim[g](= 0.008) (Redt] is chosen by the formulRef] = —2.62+
0.608Ref;| — 0.110Red; |2 + 0.008Ret; |2)(A), the scattering amplitudeog[||] as a
function of Ref;] and g with fixed Im[g&/](= 0.001) andimg](= —0.02) (Re] is cho-
sen by the formul&ef;] = 0.389— 0.154Re4;])(B), the maximal value of scattering am-
plitude Log[||] as a function off (Im[&;]) andImlg] with & = 3— f(Im[g])Imlg]i and
Ref] = —1.5604 (C) and the maximal value of scattering amplitude(|5;|] as a function
of f(Imlg]) andImg] with Ref] = —12 andg; = 2.237— f(Im[&])Im[&]i (D).
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Fig. 8. High scattering efficiencies with huge radar backscattering cross segtigras
the function of sizey for & with the property of energy-gain (A and B) and #rwith the
property of energy-gain (C and D).
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4, Conclusion

With the expanded Mie theory, the Maxwell’s equations are solved by the Debye’s scalar po-
tentials and the electromagnetic fields are expressed in terms of Bessel functions with Legendre
functions. Thus, the light scattering of spherical structure with anisotropic permittivity can be
analyzed effectively. For metal particle, small dissipative damping will result in the rapid de-
crease of resonance scattering cross section. Furthermore, the resonance cross section of higher
order scattering mode deceases more quickly than that of dipole mode. This explains that why
the electric dipole approximation is an effective method for small metal particle, and it also
implies that the dipole mode may be an effective way to control light energy into nanometer
scale.

With designing the transverse permittivity and the longitudinal permittivity,, we can
introduce an active mechanism to compensate the damping dissipation of plasmons and even
enhance the resonance of plasmons. With the analysis of extinction, scattering, absorption and
radar cross section, the electric anisotropy effects on scattering efficiency are studied systemat-
ically for small partial. Following the change of the transverse permittisityhe longitudinal
permittivity & and the particle sizq, the huge scattering cross sections are found at the re-
gions with special parameters. The huge cross sections are considered to be due to the coupling
between the surface plasmon with electric dipole mode and the active medium. This coupling
results in the strong light emitting and scattering.
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