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Abstract: The light scattering by a spherical particle with radial
anisotropic permittivityε and permeabilityµ are discussed in detail by
expanding Mie theory. With the modified vector potential formulation, the
electric anisotropy effects on scattering efficiency are addressed by studying
the extinction, scattering, absorption and radar cross sections following
the change of the transverse permittivityεt , the longitudinal permittivity
εr and the particle sizeq. The huge scattering cross sections are shown
by considering the possible coupling between active medium and plasmon
polaritons and this will be possible to result in spaser from the active
plasmons of small particle.
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1. Introduction

Controlling light energy into nanometer scale is one of the rapidly growing fields of mate-
rial physics and nanotechnology[1, 2, 3] which hosts a lot of important research directions
with potential applications such as high-resolution optical imaging[4, 5], small-scale sensing
techniques[7, 8], and numerous biomedical applications[9, 10, 11, 12]. Presently, designing
the metal/dielectric interface with the use of surface plasmon polaritons is considered to be
an effective approach of manipulating light on nano scale. With the isolated small metal par-
ticle, the local electromagnetic field can be enhanced by the surface plasmons localized on
the surface and thus be utilized to enhance Raman scattering[13, 14], fluorescence of single
molecule[15, 16] and transfer resonantly the energy of exciton[17], and so on. With design-
ing the proper periodic pattern on metal materials or the interface of active medium, dielec-
tric and metal, the different plasmon modes can be hybridized and tune the resonance fre-
quency for guiding electromagnetic wave on nanosized structure[18, 19, 20, 21] and lasing of
semiconductor nano particle or fluorescence molecules in dielectric media with assistance of
plasmons[22, 23, 24, 25, 26, 27, 28, 29]. Therefore, the anisotropic materials or designed meta-
materials with anisotropy have been a subject of great interest, since the merging of plasmonics
and these materials may open up a new perspective to control the electromagnetic wave, such
as the achievement of negative index metamaterials in the optical frequencies[30].

Prodanet al. have studied the plasmon hybridization of complex nanoshell structures with a
metallic shell and a dielectric core[31, 19]. The interaction of bare plasmon modes of individ-
ual surface is demonstrated. Furthermore, Bergmanet al. predicted that the surface plasmon
can be amplified by stimulated emission of radiation and thus result in lasing with the gener-
ator of coherent surface plasmons[27]. Recently, it was experimentally demonstrated that the
spaser is realized on a conjugate structure with a metallic core and a dye-doped dielectric shell
which is as an active medium to overcome the inherent loss of surface plasmon inside metal
core[28]. In this paper, we study the fancy effect of light scattering on the small particles with
radial anisotropic permittivity. Some progress has been made in this direction about spherical
anisotropic structures[32, 33, 34, 35, 36, 37, 38, 39]. The method of moments, coupled-dipole
methods, second-harmonic generation approach and expanded Mie theory have been devel-
oped to expand the field expressions[32, 33, 34, 36]. Some new effects of light scattering by
anisotropic materials, such as the additional increase in field enhancement near surface plasmon
resonance frequencies induced by anisotropy, have been analyzed[39]. Here, with modified Mie
theory, we will analyze the space of parameters including the transverse permittivityεt , the lon-
gitudinal permittivityεr , the particle sizea and wavelength of incident waveλ . We consider
the anisotropy of permittivityε results in the spherical particles have different properties in dif-
ferent directions, such as metallic property and light-active dielectric property. The huge light
scattering is found in special region of parameter space after inspecting the extinction, scat-
tering, absorption and radar cross section. This fantastic effect is suspected to be due to the
coupling between active medium and plasmons and be possible to result in spaser.
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2. Theoretical model

Different analytical methods have been developed to deal with the light scattering with medium
with different structures[40, 41]. For planar multilayered structures, the 3D Fourier transform
technique was usually used to relate the space and spectral domains to the analysis of the
waves and fields[42, 43]. For the boundary-value problems and periodic structures, the Green’s
functional technique as a kernel is used to solve the integral equation[44]. For the spherical and
cylindrical structures, the Lorenz-Mie approach is a powerful method of separation of variables
to expand angularly the electromagnetic field[45, 46, 47, 48, 49]. Here, we chose to modify the
Mie theory to deal with the particle with radial anisotropy[38, 40].

We assume that the plane wave with the electric field polarized along thex axis is scattered by
the particle immersed in homogeneous medium. Considering the scattering about monochro-
matic wave, the time dependencee−iωt part can be suppressed and the electric and magnetic
vectors satisfy the time-free Maxwell’s equations:

∇−→H = −ik0ε ·−→E and∇−→E = ik0µ ·−→H , (1)

wherek0 is the wave vector of light in vacuum. The uniaxial anisotropy of particle is defined
by the constitutive tensors of the permittivity and permeability as:

ε =





εr 0 0
0 εt 0
0 0 εt



 andµ =





µr 0 0
0 µt 0
0 0 µt



 (2)

where the coordinate system is spherical coordinate, andεr , εt , µr andµt are the longitudinal
permittivity, transverse permittivity, longitudinal permeability and transverse permeability, re-
spectively. In general case, these four valuesεr , εt , µr and µt will be complex numbers, i.e.
εr = Re[εr ]+ i Im[εr ], εt = Re[εt ]+ i Im[εt ], etc. As usual, the electric and magnetic vectors can
be expressed by the Debye’s scaler potentialsΠTE andΠTM . Thus, the Maxwell vector equa-
tions are transferred as the scaler equations about the magneticΠTE and electricΠTM potentials,
which are expressed as:

εr

εt

∂ 2ΠTM

∂ r2 +
1

r2sinθ
∂

∂θ

(

sinθ
∂ΠTM

∂θ

)

+
1

r2sin2θ
∂ 2ΠTM

∂ϕ2 +k2
0εr µtΠTM = 0, (3)

µr

µt

∂ 2ΠTE

∂ r2 +
1

r2sinθ
∂

∂θ

(

sinθ
∂ΠTE

∂θ

)

+
1

r2sin2θ
∂ 2ΠTE

∂ϕ2 +k2
0εt µrΠTE = 0, (4)

for the scattering by particle with anisotropic permittivityε and permeabilityµ . Solving these
equations with corresponding boundary conditions, the scattering amplitudesBe

l (electric) and
Bm

l (magnetic) can be found to be as:

Be
l = i l+1 2l +1

l(l +1)
be

l andBm
l = i l+1 2l +1

l(l +1)
bm

l , (5)

with,

be
l =

√
εtΦ′

l (k0a)Φv1(kta)−√µtΦl (k0a)Φ′
v1

(kta)
√

εtξ ′
l (k0a)Φv1(kta)−√µtξl (k0a)Φ′

v1
(kta)

, (6)

bm
l =

√
εtΦl (k0a)Φ′

v2
(kta)−√µtΦ′

l (k0a)Φv2(kta)
√

εtξl (k0a)Φ′
v2

(kta)−√µtξ ′
l (k0a)Φv2(kta)

, (7)
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wherekt = k0
√εt µt is the wave vector in anisotropic spheres. the functionsΦl (x) andξl (x) are

given by

Φl (x) =

√

πx
2

Jl+ 1
2
(x), (8)

ξl (x) =

√

πx
2

(

Jl+ 1
2
(x)+ iNl+ 1

2
(x)

)

(9)

whereJl (x) andNl (x) areusual Bessel function and Neumann function. The orderv1 andv2 of
the spherical Bessel functionΦv1 andΦv2 are:

v1 =

[

l(l +1)
εt

εr
+

1
4

]1/2

− 1
2
, (10)

and

v2 =

[

l(l +1)
µt

µr
+

1
4

]1/2

− 1
2
. (11)

With the solution aboutΠTE andΠTM , we can analyze the distribution of electromagnetic
fields around the particle. The lost of total energy from incident wave and the energy flux due to
backscattering from the particle can be also analyzed. With optical cross-section theorem, the
forward scattering amplitude can be evaluated by extinction, scattering and absorption cross
sections. The backward scattering amplitude can be evaluated by radar cross section. For the
convenience of discussion, the dimensionless cross sectionsQ is introduced by the formula
Q = σsc/σgeom, whereσsc is the optical cross-section of the particle andσgeom= πa2 is the
geometrical cross section with the radiusa. By the scattering amplitudesbe

l andbm
l , the dimen-

sionless extinction, scattering and backscattering cross section can be expressed as:

Qext =
2

k2
0a2

∞

∑
l=1

(2l +1)Re(be
l +bm

l ),

Qsca=
2

k2
0a2

∞

∑
l=1

(2l +1)
[

|be
l |2 + |bm

l |2
]

,

Qrbs =
1

k0a
Re

∣

∣

∣

∣

∣

∞

∑
l=1

(−1)l (2l +1)(be
l −bm

l )

∣

∣

∣

∣

∣

2

. (12)

With the extinction and scattering cross section, the dimensionless absorption cross section can
be defined by the formula,Qabs= Qext−Qsca. For discussing the light scattering due to surface
plasmons, the scattering amplitudes in equ.(6)and(7) can be expressed in a more convenient
form:

be
l =

Fe
b (l)

Fe
b (l)+ iGe

b(l)
andbm

l =
Fm

b (l)

Fm
b (l)+ iGm

b (l)
, (13)

with,

Fe
b =

√
εtΦ′

l (k0a)Φv1(kta)−√
µtΦl (k0a)Φ′

v1(kta),

Ge
b =

√
εt χ ′

l (k0a)Φv1(kta)−√
µt χl (k0a)Φ′

v1(kta),

Fm
b =

√
εtΦl (k0a)Φ′

v2(kta)−√
µtΦ′

l (k0a)Φv2(kta),

Gm
b =

√
εt χl (k0a)Φ′

v2(kta)−√
µt χ ′

l (k0a)Φv2(kta), (14)

whereχl (x) =
√πx

2 Nl+ 1
2
(x).
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3. Results and Discussion

The special properties of surface plasmon are expected to exist in the anisotropic materials.
Since the electron collective movements are shown clearly in metal, let us consider firstly the
strange effect in small isotropic metallic sphere. The relative dielectric permittivity in the Drude
model is described as:

εD = 1−
ω2

p

ω2 + iγω
with ωp =

(

ne2

ε0m0

)1/2

, (15)

whereωp, γ, n, e m0 andε0 are the plasma frequency, frequency of electron collisions, concen-
tration of electron, charge of electron, mass of electron and vacuum permittivity, respectively.
Obviously, the value is complex, i.e.εD = Re[εD]+ i Im[εD]. Here,ωp exhibits the properties
of bulk plasmons. With the decrease of size, the new plasmon modes, surface plasmons will be
possible to be excited. The nondimensional quantityq = a

√
εmk0, can be as size parameter to

analyze the scattering effects with the radius of the spherical particlea and the dielectric permit-
tivities of mediaεm. At smallq, the electric dipole scattering plays the dominant role. the scatte-
ring from the magnetic amplitudesbm

l can be also neglected. Now we consider the case which is
far from the resonances. The amplitudebe

1 of electric dipole can be approximately expressed as
(−2i/3)εD−1

εD+2q3. This results in classical extinction efficiencyQR
scat (≃ 8

3|
εD−1
εD+2|2q4) of Rayleigh

scattering. It should be noticed that theQR
scat has a singularity atεD = −2. Therefore, with ne-

glecting the frequency of electron collisions (γ = 0), it is obtained that the resonance frequency
of dipole surface plasmonωsp = ωp/

√
3. By introducing normalized frequencyωR = ω/ωsp

and normalized collision frequencyγR = γ/ωsp, the Drude dielectric permittivity can be rewrit-
ten as:

εD = 1− 3

ω2
R+ γ2

R

+ i
γR

ωR

3

ω2
R+ γ2

R

. (16)

For the cases of weak dissipation (γR ∈ [10−1,10−3]), the imaginary part of dielectric permit-
tivity Im[ε] will be less than 0.3. In the process of deducing Rayleigh formula, theFe

b (l) in
denominator part ofbe

l is ignored, relative toGe
b(l). However, for the case which is near the

resonances (Geb(l) → 0), theFe
b (l) will can not be ignored. Actually,Fe

b (l) corresponds to the
radiative damping as shown in Refs.[50, 51]. With the consideration of radiative damping, the
singularity of Rayleigh extinction efficiency will be disappeared. Meanwhile, a series of sur-
face localized electromagnetic modes with the resonance frequenciesωR(l)(∼

√

3l/(2l +1))
appear in the formula for small particle. This means the surface plasmons will be possible to be
excited when the condition (Re[εD] < −1) is satisfied for the real part of dielectric permittivity
Re[εD] of the particle.

Under the nondissipative limit (Im[εD] = 0), the resonance extinction cross section from
small particle increases with increase in the order of the resonance modes, as shown in Ref[50].
However, in the real metal materials, the different dissipative mechanisms, such as the electron-
electron collision, electron-phonon coupling and electron-defect interaction, will result in the
damping of the collective moving of electrons withIm[εD] > 0. With the weak dissipative
damping, the resonance frequencies are not changed obviously, whereas the extinction cross
section of each resonance modes will decrease quickly. As shown in Fig. 1, the decrease of the
cross sections of higher order modes is quicker than that of dipole resonance cross sections.

For the particle sizeq≤ 1 with Im[εD] ≥ 0.07 at each resonance frequency, the dipole reso-
nance becomes greater than that of the higher order modes, such as quadruple. For an example,
the dipole resonance of the particle with sizeq = 0.5 becomes the dominant resonance mode
when the image part of permittivityεD is larger than 0.02. The quick decrease of cross section
of high order resonance modes may be attributed to their relative small characteristic widths. As
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Fig. 1. The maximal value ofQext for each resonance mode as a function of the dissipative
dampingIm[εD] for the sizeq = 1 (A) andq = 0.5 (B). TheQext as a function of both
frequencyω and Im[εD] for dipole and quadrupole modes of the particle with sizeq = 1
shown in the inset of (A).

we known, the natural width of the arbitrary resonance is given by the following expression[50]:

γl =
q2l+1(l +1)

[l(2l −1)!!]2(dεD/dω)l (17)

where the derivative(dεD/dω)l is taken at the corresponding resonance frequencyω = ωl .
There is an extremely sharp decrease inγl with the increase ofl . At the same time, the charac-
teristic widthγl will increase and the different resonance modes become to incorporate, follow-
ing the increase of sizeq. As shown in the inset of Fig. 1A, the incorporation between dipole
and quadruple resonances induces that the quadruple resonance still holds an important rule in
scattering process even atIm[εD] = 0.3 for the sizeq= 1. Whatever, we can find that the dipole
resonance mode should be considered to be as an important role for the application of surface
plasmons.

Since the small size is more effective for the surface plasmons as found in Fig. 1A and B, we
will detect the giant resonance cross section in the size rang 0< q< 1 for the small metal sphere.
As the result of Rayleigh formula, the dipole scattering section increases quickly followingεD

reaches asymptotically the singular value−2 (in Fig. 2A) under the nondissipative limit, while
the sizeq arrives at the limit value 0 from Mie theory as shown in Fig. 4A. With the dissipative
damping, the resonance frequency of the maximal resonance cross section will have a large
change, though the resonance frequency is just with an inconspicuous change by following the
increase ofIm[εD] at fixed sizeq. As Fig. 2A shown, the maximal resonance frequency has a
red-shift with the decrease of the maximal cross section as a function ofIm[εD]. This means the
maximal resonance scattering should be appeared on a particle with a limited small size and
not on a particle withq→ 0.

Near plasmon resonance frequencies, the anisotropy of permittivity can lead to an addi-
tional increase in field enhancement has been shown. In Fig. 3A, the maximal scattering sec-
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Fig. 2. The maximal value ofQext as a function ofRe[εD] with different Im[εD] (A), the
maximal or minimal values ofQsca andQabs as a function ofIm[εD] with Re[εD] = −2.2
(B), maximal value ofQext as a function ofIm[εr ] with differentRe[εr ] and the ratioεt/εr

(C and D).

Fig. 3. Log[Qmax ext] as a function of bothεr andεt/εr (A), Qext as a function ofq and
εt/εr with fixed longitudinal permittivityεr = −2.5 (B) andQext as a function ofq andεr

with fixed ratioεt/εr = 0.75 (C), with the nondissipative limit (Im[εr ] = 0 andIm[εt ] = 0).
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Fig. 4. Log[Qext] as a function of permittivityεD and sizeq under the nondissipative limit
(Im[εD] = 0) (A), the maximal value of Log[Qext] as a function ofRe[εD] andIm[εD] (B),
the maximal value of Log[Qsca] as a function ofIm[εr ] and the ratio|εt |/|εr | for Re[εr ] =
−2.5 andεt = (−2.5+ i Im[εr ])|εt |/|εr |(C), Log[Qsca] as a function of the ratio|εt |/|εr |
and sizeq for εr = −2.5−0.1i andεt = (−2.5−0.1i)|εt |/|εr |(D).

tion Qmax extas a function of bothεr andεt/εr is demonstrated under the nondissipative limit
(Im[εr ] = 0 andIm[εt ] = 0). It can be found that the maximal value ofQmax ext will exist at
the relative small ratio ofεt to εr with the decrease ofεr . Since the scattering efficiencies are
inversely proportional toq2, the change ofQmax extfollowing the change of the ratioεt/εr may
be due to the shift in the resonance positions. As Fig. 3B shown, the maximal value ofQext is at
the small sizeq with the decrease of the ratioεt/εr . Furthermore, theQext also increases with
the decease ofq and increase ofεr at fixed ratioεt/εr = 0.75 shown in Fig. 3C. Therefore, the
enhancement of resonance scattering efficiencies can be attributed mostly to the decrease of the
sizeq.

As we shown, the resonance scatting section decreases quickly with the enhancement of
the dissipative damping. If an assumed active mechanism with the negative value forIm[εD] is
introduced, whether the scattering efficiency can increase need to be checked further. In Fig. 2B,
the resonance cross sections of scattering (Qmax sca) and absorption (Qmin absor Qmax abs) as the
functions ofIm[εD] with the fixedRe[εD] (= −2.2) are analyzed. we find thatQmax scahas a
maximal value at the point withIm[εD] = −0.05. At the same time, there is a minimal value
for Qmin abs. It is well known that the absorption is attributed to the dissipative damping. With
the decrease ofIm[εD], the efficiency of absorption decreases, whereas the resonance scattering
cross section increases. Thus, there is a maximal value forQabs at special point ofIm[εD]. At
the limit of small size parameter, the maximal value ofQabs is given byQl

abs max=
1
q2 (l +1/2)

[52]. Then at the nondissipative limit, the absorbtion cross section (Qabs) will become zero.
The negativeQsca at the negativeIm[εD] means the particle can emit light with some active
mechanism. Therefore, the minimal value ofQmin absat Im[εD] = −0.05 means there is light
emitting with special resonance mechanism. In Fig. 4B, theQmax scaas the function of both
Re[εD] and Im[εD] is shown. It is found that the maximal resonance scattering cross section
exists with the more negative value ofIm[εD] for the smallerRe[εD]. In Fig. 2 C, D and Fig. 4
C, we demonstrate that the anisotropy of permittivity with different negative image part may
result in the more large resonance cross sections of scattering and emitting. In Fig. 4D, we
found that the giant resonance cross section is located at the region of special particle size.

In practice, the active metal is impossible to exist, since the overlap of valance band and
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Fig. 5. the resonance cross section Log[Qsca] as a function of transverse permittivity (Re[εt ]
andRe[εt ]) with the fixed longitudinal permittivityεr = 2.5−0.05i (A), the maximal value
of scattering amplitude|be

1| as a function ofRe[εt ] andIm[εt ] with the fixedεr = 2.5−0.05i
(B).

conduction band at the Fermi level will result in an impotent radiation transition for any visible
light and the energy gain from the model of absorbtion-emission can not be realized. However,
if the dielectric or insulate , such as silica, is introduced in the system, the light absorbtion-
emission model can be used to be as the mechanism of energy gain. Therefore, the active
mechanism can be introduced by the anisotropic permittivity withεr or εt for the active medium.
Then it is expected that the light gain can be coupled with the collective moving of electrons
from metal. The giant resonance cross section for light scattering and adsorption (or emission)
will be possible to be obtained.

For the metal particle, the giant scattering resonance cross section due to the surface plas-
mons is localized at the small size withq < 1. For dielectric particle, there isn’t the ability to
trap the electromagnetic field which results in the scattering cross section is small in the nano
size for visible light. Since the surface plasmons mechanism is more effective for small size,
we will limit the size of the anisotropic spherical particle in the region of 0< q≤ 2. As Fig. 5A
shown, the maximal value ofQsca is as a function ofRe[εt ] andIm[εt ] with fixed longitudinal
permittivity εr = 2.5−0.05i. We can found that there is a region withRe[εt ] ∼ −1.8 for giant
scattering cross section duo to the resonance. It is known that the resonance from the electric
dipole mode needsε ≤ −2 for metal particle. Therefore, it is possible that there is a relation
for both εr andεt in the region of resonance. It is also found thatIm[εt ] is less than 0.05 for
the region of resonance. It seems that the energy gain from the active dielectric part (εr ) must
be larger than the dissipative damping from the metal part (εt) for the giant resonance cross
section.

Is it possible that the giant resonance cross section is from the contribution of different scatte-
ring modes? After the analysis of scattering cross section, it is found that the electronic dipole
mode is the major contribution for the special anisotropic particle with the size 0< q ≤ 2.
In Fig. 5B, the absolute value of the scattering amplitudebe

1 from electric dipole mode as a
function ofRe[εt ] andIm[εt ] with fixed longitudinal permittivityεr = 2.5−0.05i is shown. It
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Fig. 6. the maximal value of scattering amplitude|be
1| as a function ofRe[εr ] andRe[εt ]

with fixed Im[εr ](= −0.05) andIm[εt ](= 0.008) forεr as active medium (A), with fixed
Im[εr ](= 0.001) andIm[εt ](= −0.02) forεt as active medium (B).

demonstrates the major contribution of electronic dipole mode. Therefore, it is considered that
the electronic dipole mode will be possible to be the effective major mode to couple with the
active medium for the particle with size 0< q ≤ 2. Firstly, the longitudinal permittivityεr as
the active medium is considered to be contributed to the the giant scattering cross section. In
Fig. 6A, |be

1 max| as a function ofRe[εr ] andRe[εt ] with fixed image partsIm[εr ] = 0.05 and
Im[εt ] =−0.008 is shown. Obviously, there is a quasi-linear region for the resonance cross sec-
tion. By fitting the extremum of|be

1 max| aboutRe[εr ] andRe[εt ], we find there is a quasi-linear
relation (Re[εt ] = −2.62+ 0.608Re[εr ]− 0.110Re[εr ]

2 + 0.008Re[εr ]
3 ) for resonance region.

Secondly, the transverse permittivityεt is considered to be as the active medium for the giant
scattering cross section. In Fig. 6B,|be

1 max| as a function ofRe[εr ] andRe[εt ] with fixed image
partsIm[εr ] = 0.001 andIm[εt ] = −0.02 is shown. It is found that there is also a linear rela-
tion aboutRe[εr ] andRe[εt ] for the resonance region. By fitting the value of|be

1 max|, the linear
relation,Re[εt ] = 0.389−0.154Re[εr ], is found.

With the relation about the real parts of bothεr andεt , we can detect the dependence of the
size about the resonance cross section in the resonance region in detail. From Fig. 7A and B,
it is found that the size for resonance cross section changes with the real part of permittivity.
Furthermore, by the relation ofRe[εr ] andRe[εt ], the size is more dependent to the permittivity
with the dielectric property. Then we can explore the dependence of resonance cross section
to the dissipative damping from metal and the gain energy of active dielectric. Considering
the weak dissipative limit, we just analyze theIm[εt ] or Im[εr ] in the region[0,0.3] for the
damping. As shown in Fig. 7C and D, there is the special relation bewteenIm[εt ] andIm[εr ] for
the resonance process. It gives us an amazed conclusion that it is not the case that larger energy
gain results in a stronger coupling to surface plasomons and then a larger resonance cross
section. In additional, with the special ratio ofIm[εt ] andIm[εr ], there are the giant resonance
cross sections, such as for backscattering shown in Fig. 8. The giant cross sections should be
attributed to the the resonance of electric dipole mode with the assistance of gain energy from
the activeεr or εt and this maybe result in spaser.
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Fig. 7. the scattering amplitudeLog[|be
1|] as a function ofRe[εr ] and q with fixed

Im[εr ](= −0.05) andIm[εt ](= 0.008) (Re[εt ] is chosen by the formulaRe[εt ] = −2.62+
0.608Re[εr ] − 0.110Re[εr ]

2 + 0.008Re[εr ]
3)(A), the scattering amplitudeLog[|be

1|] as a
function of Re[εr ] andq with fixed Im[εr ](= 0.001) andIm[εt ](= −0.02) (Re[εt ] is cho-
sen by the formulaRe[εt ] = 0.389−0.154Re[εr ])(B), the maximal value of scattering am-
plitudeLog[|be

1|] as a function off (Im[εr ]) andIm[εt ] with εr = 3− f (Im[εt ])Im[εt ]i and
Re[εt ] =−1.5604 (C) and the maximal value of scattering amplitudeLog[|be

1|] as a function
of f (Im[εr ]) andIm[εr ] with Re[εr ] = −12 andεt = 2.237− f (Im[εr ])Im[εr ]i (D).

Fig. 8. High scattering efficiencies with huge radar backscattering cross section.Qrbs as
the function of sizeq for εr with the property of energy-gain (A and B) and forεt with the
property of energy-gain (C and D).
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4. Conclusion

With the expanded Mie theory, the Maxwell’s equations are solved by the Debye’s scalar po-
tentials and the electromagnetic fields are expressed in terms of Bessel functions with Legendre
functions. Thus, the light scattering of spherical structure with anisotropic permittivity can be
analyzed effectively. For metal particle, small dissipative damping will result in the rapid de-
crease of resonance scattering cross section. Furthermore, the resonance cross section of higher
order scattering mode deceases more quickly than that of dipole mode. This explains that why
the electric dipole approximation is an effective method for small metal particle, and it also
implies that the dipole mode may be an effective way to control light energy into nanometer
scale.

With designing the transverse permittivityεt and the longitudinal permittivityεr , we can
introduce an active mechanism to compensate the damping dissipation of plasmons and even
enhance the resonance of plasmons. With the analysis of extinction, scattering, absorption and
radar cross section, the electric anisotropy effects on scattering efficiency are studied systemat-
ically for small partial. Following the change of the transverse permittivityεt , the longitudinal
permittivity εr and the particle sizeq, the huge scattering cross sections are found at the re-
gions with special parameters. The huge cross sections are considered to be due to the coupling
between the surface plasmon with electric dipole mode and the active medium. This coupling
results in the strong light emitting and scattering.
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