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Periodic structures of spherical silicon particles are analyzed using the coupled-dipole equations for studying
optical response features and local electromagnetic fields. The model takes into account the electric and
magnetic dipole moments of the particles embedded in a homogeneous dielectric medium. Particles with radius
of 65 nm and larger are considered. It is shown that, due to the large permittivity of silicon, the first two Mie
resonances are located in the region of visible light, where the absorption is small and the extinction is
basically determined by scattering. The main contribution is given by the induced magnetic and electric dipoles
of the particles. Thus, in contrast to metal particle arrays, here is a possibility to combine separately either the
electric or magnetic dipole resonances of individual particles with the structural features. As a result, extinction
spectra can have additional narrow resonant peaks connected with multiple light scattering by the magnetic
dipoles and displaying a Fano-type resonant profile. Reflection and transmission properties of the Si particle
arrays are investigated and the conditions of low light reflection and transmission by the particle arrays are
discussed, as well as the applicability of the dipole approach. It is shown that the light transmission of
finite-size arrays of Si particles can be significantly suppressed at the conditions of the particle magnetic dipole
resonance. It is demonstrated that, using resonant conditions, one can separately control the enhancements of
local electric and magnetic fields in the structures.
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I. INTRODUCTION

Optical properties of nanoparticle structures attract a lot
of interest currently due to their application perspectives for
controllable manipulation of optical fields on microscale and
nanoscale levels. The combination of localized surface-
plasmon resonances �LSPR� of individual metal particles and
various particle structure configurations opens ways for the
realization of important effects such as strong-field confine-
ment and enhancement,1–3 light energy guiding along nano-
particle chains,4,5 collective resonance response of periodic
nanoparticle arrays,6–8 and surface-enhanced Raman spec-
troscopy with sensitivity down to a single molecule.9,10 Ow-
ing to the fact that optical response and local field distribu-
tions are strongly dependent on the particle shape and
size,11,12 the interaction between particles,13,14 and the polar-
ization of the incident light, it was suggested to get a strong
magnetic response at visible-light frequencies using electro-
magnetically coupled pairs of gold nanoparticles.15–17 This
effect, based on hybridization of individual nanoparticle
modes,13 can be used for the creation of metamaterials with
strong magnetic properties in optical frequency regions
which are important for the realization of negative refraction
and for the implementation of different micro-optical devices
such as cavities, lenses, mirrors, and filters.18

Due to the Mie resonances of dielectric spheres with large
permittivity values,19 dielectric particles also can be consid-
ered as basic elements of structures where the behavior of
electromagnetic fields is controlled by particle and structural
properties.20 It has been shown that dielectric metamaterials
constituted by polaritonic, nonmagnetic spheres can have
negative effective permeability at infrared frequencies.21,22

The strong magnetic response is connected to the existence
of dielectric resonator �particle� modes for which the radial
component of the magnetic field is not equal to zero.23 In the
Mie theory of dielectric scatterers the first spectral resonance
from the side of large wavelengths always corresponds to the
magnetic dipole term with the coefficient b1.19 In this case, a
dielectric particle can be considered as a magnetic dipole
scatterer of an incident electromagnetic wave at the resonant
wavelength. This resonance results in an increased magnetic
field in the near-field region around the particle. The concept
and performance analysis of all-dielectric metamaterials, in-
cluding their magnetic response, have recently been
presented24 and first experimental realizations were
demonstrated.25,26 The enhancement of Raman scattering due
to the resonant response of dielectric spheres has also been
suggested.27,28

Application of Mie scattering theory for studying the elec-
trodynamic response of metal or dielectric particle structures
embedded in a host material is widely used, beginning from
the work of Lewin.29 This theoretical approach allows an
effective combination between the electric and magnetic po-
larizabilities obtained in Mie theory for an arbitrary sphere30

and the coupled-dipole method. In this approximation, each
particle is treated as a dipole scatterer and the total dipole
moments of the particles are found by solving the coupled-
dipole equations6,7,31–34 including the cases when particles
are considered as electric and magnetic dipoles.35–37 It is nec-
essary to note that the coupled-dipole approach can be ap-
plied if the distances between the particles in considered sys-
tems are larger than several particle radii.6,7 We will return to
the question in the main part of the paper when the validity
of the applied approximation will be discussed.
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In the framework of the coupled-dipole method, it was
theoretically shown6,7,38,39 and experimentally confirmed8,40

that one-dimensional and two-dimensional �2D� periodic ar-
rays of metal nanoparticles can have sharp spectral features
in the optical response �additional resonant peaks in their
extinction spectra� when the wavelength of the scattered
light commensurate to the periodicity of the arrays and is in
the same spectral range as the LSPR �for example, see a
recent review given in Ref. 31�. The width of the structural
resonance, which is a result of multiple scattering of light,
and its spectral position are controlled by the particle sizes,
their distance, and their quantity in the array. In the limit of
an infinite array, there is a possibility to obtain extremely
narrow resonances for a certain ratio between the particle
radius and the array period.7,31 The existence of narrow
structural resonances in the extinction spectra of periodic
metal particle systems determines their perspectives in
chemical and biological sensor applications,41 and in surface-
enhanced Raman spectroscopy.38

In this paper, we theoretically study optical spectral fea-
tures and local fields of alternative periodic two-dimensional
structures consisting of spherical Si particles with diameters
of 130 nm and larger under normal light incidence. It is
shown that for such particles, due to the large permittivity of
silicon �Fig. 1�,42 the first two Mie resonances are located in
the region of visible light, where the absorption is small and
the extinction is basically determined by scattering with the
main contribution given by the induced magnetic and electric
dipoles. Thus, in contrast to metal particle arrays, here is a
possibility to combine separately either the electric or mag-
netic dipole resonances of individual particles with structural
features. Note that we consider the case of normal incidence
of light, showing that the silicon particle structures have a set
of original and interesting properties that would rather be
expected for metal or magnetic particles. As a result, the
extinction spectra can have additional narrow resonance
peaks with the Fano-type shape43–45 connected with multiple
light scattering by the magnetic dipoles. Moreover, using
resonant conditions, one can control separately the enhance-
ments of local electric and magnetic fields in the structures.
We show that in the framework of the dipole approach, there
exists a wavelength where the reflection of an infinite array,
with a period smaller than the considered wavelength, is neg-
ligibly small due to interference between electric and mag-

netic dipole scattering46 which induces the electromagnetic
transparency of the structure.

II. THEORETICAL BACKGROUND

We study the optical properties of a 2D rectangular par-
ticle array embedded in a homogeneous nonmagnetic trans-
parent medium with a relative dielectric constant �d. The
one-layer structure is located in the xy plane at z=0 with
periodicity in the x and y directions. The particle array is
irradiated by an external optical plane wave with electric and
magnetic fields E0�r�exp�−i�t�=E0 exp�ikdr− i�t� and
H0�r�exp�−i�t�=H0 exp�ikdr− i�t�, respectively, see Fig. 2.
The wave vector kd is given in the embedding dielectric
medium with �d and � is the circular frequency of the wave.
In the following, the time dependence exp�−i�t� will be
omitted.

In the dipole approximation, the particles are considered
as electric and magnetic dipoles with electric and magnetic
polarizabilities �E and �M, respectively. The corresponding
electric and magnetic dipole moments pl and ml �l
=1,2 , . . . ,N� can be found from the coupled-dipole equa-
tions written with the inclusion of the magnetic dipoles,36,47

pl = �E�El
0 +

k0
2

�0
�
j�l

N �Ĝljp j +
i

ck0
�glj � m j��	 ,

ml = �M�Hl
0 + k0

2�
j�l

N ��dĜljm j −
ic

k0
�glj � p j��	 , �1�

where El
0
E0�rl� and Hl

0
H0�rl� are the incident fields at
the point of the particles with number l �under condition of
normal incidence, which is considered in the paper, these
fields are the same for all particles in the structures�, k0 is the
wave number in vacuum, N is the total number of particles in
the structure, c= ��0�0�−1/2 is the vacuum speed of light ��0
and �0 are the vacuum permittivity and permeability, respec-
tively�, and �i� is the imaginary unit. The Green’s tensor of
the medium without particles is

400 500 600 700 800
0

5

10

15

20

25

30

35

40

λ (nm)

ε S
i

Re
Im

FIG. 1. �Color online� Dielectric permittivity of Si from Ref.
42.

FIG. 2. �Color online� Schematic representation of physical
system.
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1
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where Rlj = �Rlj�= �rl−r j�, eReR is the dyadic constructed from

the unit vector eR=Rlj /Rlj, Û is the unit 3�3 tensor. The
vector

glj 
 g�rl,r j� =
eikdRlj

4�Rlj
� ikd

Rlj
−

1

Rlj
2 �Rlj �3�

is connected with the tensor �2� by the relationship

�g�rl,r j� � p j� = � � Ĝ�rl,r j�p j ,

here, the differentiation is carried out with respect to rl.
Note that the system of Eq. �1� can easily be obtained

making use of the expressions for the electric E and mag-
netic H fields created by arbitrarily oriented electric p and
magnetic m dipoles located at rp and rm, respectively,

Ep�r� =
k0

2

�0
Ĝ�r,rp�p, Hp�r� =

k0c

i
� � Ĝ�r,rp�p ,

Hm�r� = kd
2Ĝ�r,rm�m, Em�r� =

ik0

c�0
� � Ĝ�r,rm�m .

The extinction cross section for a system of electric and
magnetic dipoles can be obtained from the Maxwell
equations,48

� � E�r� = i��0�H�r� + �
j=1

N

m j��r − r j� , �4�

� � H�r� = − i���0�dE�r� + �
j=1

N

p j��r − r j� . �5�

From this system one obtains

Re��
�

�E0�r� � H��r��ds + �
�

�E�r� � H0��r��ds
= − � Im�

j=1

N

�E0��r j�p j + �0H0��r j�m j� . �6�

E0 and H0 are the electric and magnetic fields of the incident
wave, e.g., the solution of Eqs. �4� and �5� without field
sources and E and H are the scattered fields created by the
dipoles. The surface integrals are taken over a closed surface
� surrounding the dipoles. Using Eq. �6� the extinction cross
section can be written in the form

	ext =
kd

�0�d�E0�2
Im�

j=1

N

�E0��r j�p j + �0H0��r j�m j� �7�

or

	ext = 	ext
E + 	ext

M �8�

with 	ext
E�M� being the electric �magnetic� dipole part of the

extinction cross section. The calculation of the scattering
cross section for structures consisting of electric and mag-
netic dipole particles has been recently discussed in detail.36

A. Infinite lattice

We first consider the general description of a plane elec-
tromagnetic wave interacting with an infinite 2D rectangular
array of Si particles. Under normal incidence of an external
plane wave at optical frequencies all particles will have the
same electric and magnetic dipole moments p and m, respec-
tively. Therefore, the system of Eq. �1� can be written as

p = �E�E0 +
k0

2

�0
�Ĝ0p +

i

ck0
�g0 � m��	 , �9�

m = �M�H0 + k0
2��dĜ0m −

ic

k0
�g0 � p��	 , �10�

where the electric E0 and magnetic H0 fields of the external
wave are taken for z=0,

Ĝ0 = �
j=1




Ĝ0j, g0 = �
j=1




g0j . �11�

Due to periodicity in the x and y directions of an infinite

particle array, g0=0 and the tensor Ĝ0 contains only the non-
zero diagonal elements Gxx

0 , Gyy
0 , and Gzz

0 . Under these con-
ditions, the connection between the electric and magnetic
dipoles in Eqs. �9� and �10� disappears, and the quantities
can be determined separately,

px =
�0E0 cos �

�0/�E − k0
2Gxx

0 , py =
�0E0 sin �

�0/�E − k0
2Gyy

0 , �12�

mx = −
H0 sin �

1/�M − kd
2Gxx

0 , my =
H0 cos �

1/�M − kd
2Gyy

0 , �13�

where H0= ��0�d /�0�1/2E0 and � is the angle between the
external wave polarization and the x axis. A resonant re-
sponse is obtained when the real part of any denominator in
Eqs. �12� and �13� approaches zero. Let �=0, then the elec-
tric dipole resonance will appear for

Re��0/�E − k0
2Gxx

0 � = 0 �14�

and the magnetic dipole resonance when

Re�1/�M − kd
2Gyy

0 � = 0. �15�

The conditions of the electric and magnetic resonances in-

clude different components of the tensor Ĝ0 depending on
the array period along x and y directions. Note that only in
the case of a square array Gxx

0 =Gyy
0 .

In Sec. III. connections between the conditions �14� and
�15� and the extinction spectra of the total structure will be
derived. We will see that in addition to the resonances of
individual particle �Re�1 /�E�=0 and Re�1 /�M�=0� further
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resonances occur due to the diffraction coupling, i.e., the
zeros of Eqs. �14� and �15�. In contrast to previous
works,6–8,31 additional resonances will appear due to the
magnetic properties of particles.

An estimation of the reflection and transmission coeffi-
cients can be obtained when the total electric and magnetic
fields are considered in the far zone for z�0 and z0. Us-
ing the solutions �12� and �13� and considering the incident
wave polarization along x axis ��=0� the total electric field
outside the array can be written as

Ex = E0�eikdz +
k0

2Gxx
r

�0/�E − k0
2Gxx

0 −
ikdgz

r

1/�M − kd
2Gyy

0 	 ,

Ey = E0 k0
2Gyx

r

�0/�E − k0
2Gxx

0 ,

Ez = E0� k0
2Gzx

r

�0/�E − k0
2Gxx

0 +
ikdgx

r

1/�M − kd
2Gyy

0 	 , �16�

where

Ĝr = �
j=1




Ĝ�r,r j�, gr = �
j=1




g�r,r j� . �17�

Expressions for total magnetic field can be obtained simi-
larly.

For the case of wavelength larger than the lattice period,
both in x and y direction, one can write in the far-field ap-
proach �see Appendix�,

Gzx
r = 0, gx

r = 0, �18�

Gxx
r =

i

2SLkd
e�ikdz, gz

r =
�1

2SL
e�ikdz, �19�

where SL is the area of a lattice unit cell. The upper sign
corresponds to z�0 and the lower sign to z0. In this ap-
proach, the reflection and transmission coefficients for elec-
tric field are

r =
ikd

2SL
� 1

�0�d/�E − kd
2Gxx

0 −
1

1/�M − kd
2Gyy

0 	 , �20�

t = 1 +
ikd

2SL
� 1

�0�d/�E − kd
2Gxx

0 +
1

1/�M − kd
2Gyy

0 	 , �21�

respectively. For the intensity reflection one obtains

�r�2 =
kd

2

4SL
2 ��Re��ef f

E � − Re��ef f
M ��2 + �Im��ef f

E � − Im��ef f
M ��2� ,

�22�

where we introduced for compactness the effective polariz-
abilities �ef f

E =1 / ��0�d /�E−kd
2Gxx

0 � and �ef f
M =1 / �1 /�M

−kd
2Gyy

0 �, which take into account interaction between the
particles. We determine their electric and magnetic dipoles in
the structure by the expressions,

px = �0�d�ef f
E E0, �23�

my = �ef f
M H0. �24�

The intensity transmission is given by

�t�2 = �1 −
kd

2SL
�Im��ef f

E � + Im��ef f
M ��	2

+
kd

2

4SL
2 �Re��ef f

E � + Re��ef f
M ��2. �25�

From the natural condition �t�2+ �r�2�1 one can obtain an
estimation for the minimum distance between the nearest
particles in the array when the dipole approximation breaks
down. For validity of the dipole approximation the area of
the lattice unit cell SL must satisfy the self-consistent in-
equality

SL
1/2 �kd

2

��ef f
E �2 + ��ef f

M �2

Im��ef f
E � + Im��ef f

M �
. �26�

B. Finite-size lattice

In the case of a finite-size lattice, the system of Eqs. �1�
has to be solved. Now, all components of the induced dipole
moments differ from zero. The solution for the longitudinal
components of a particle with number l can be written in the
form

pz
l = �E ik0

�0c �
j=1,j�l

N

�glj � m j�z, �27�

mz
l = − �Mick0 �

j=1,j�l

N

�glj � p j�z. �28�

From these expressions it is obvious that the z components of
the electric moments perpendicular to the lattice plane are
determined by the electric field created by the magnetic di-
poles and vice versa. The value of the z components and
their distribution in the structures are depending on the
wavelength, structure geometry, and particle number N. As
will be shown in Sec. II, for the resonant wavelengths there
is a noticeable increase in magnetic or electrical near fields
with components perpendicular to the structure. Note, that in
case of different periodicities in the x and y directions the
electric and magnetic near fields can be controlled separately
by the wavelength of the incident wave.

III. RESULTS AND DISCUSSIONS

Before going into a detailed discussion of the optical
properties of periodic Si nanoparticle arrays let us first con-
sider in Sec. III A the optical properties of single spherical Si
particles. As a next step in Sec. III B, the response of infinite
particle arrays is studied. The more realistic case of finite
structures is addressed in Sec. III C. Since silicon is mostly
covered with a native oxide layer also the nanoparticles
should be considered as Si nanospheres with a thin shell of
silicon oxide. The influence of such oxide shells of different
thickness is studied in Sec. III D.
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A. Optical response of single silicon particles

Particles with radii in the range of R=40–100 nm can
have the first two Mie resonances located in the visible spec-
tral region of light, see Fig. 3�a�, where the scattering effi-
ciency in air is given as a function of particle radius R and
wavelength. In this case, the absorption is small and the ex-
tinction is basically defined by scattering with the main con-
tributions generated by the induced magnetic and electric
dipoles. The first two Mie resonances are determined by the
expansion coefficients a1 and b1, representing the contribu-
tion of the electric and magnetic dipole moments,
respectively.49 The Mie resonances, corresponding to the
magnetic dipole �md� and to the electric dipole �ed� reso-
nances, are indicated by the arrows in Fig. 3�a�.

Figure 3�b� shows the extinction and scattering efficien-
cies calculated for Si nanospheres with R=65 nm. This spe-
cific particle radius provides the first two Mie resonances in
the center of the visible spectrum and will thus be considered
throughout the paper. To demonstrate the influences of the
separate dipole moments on the total extinction and scatter-
ing efficiencies, these quantities are also calculated including
only terms with the Mie scattering amplitudes a1 and b1
�dashed curves in Fig. 3�.

Taking into account only the scattering amplitude a1, the
extinction and scattering correspond to a pure electric dipole.
Including only the term b1 is equivalent to a pure magnetic
dipole scatterer. The electric and magnetic polarizabilities of
a sphere of arbitrary size and material can be obtained from
the coefficients a1 and b1 of the Mie theory by the method
described in Refs. 30 and 50. In this approach, the effective
multipole polarizabilities may be found by dividing each
multipole term of the scattered field by the corresponding
partial-wave amplitude of the incident wave. For the electric
and magnetic dipole polarizabilities one has

�E = i
6��0�d

kd
3 a1, �M = i

6�

kd
3 b1. �29�

The dimensionless coefficients a1 and b1 are expressed by
using the Riccati-Bessel functions with the arguments kdR
and kpR, with kd and kp being the complex wave numbers in
the surrounding dielectric and in the particle, respectively.49

The dimensions of the polarizabilities are determined by Eq.
�1�.

Note that the expressions, Eq. �29�, have been obtained
assuming the incidence of a plane wave. Using these polar-
izabilities for studying the optical response of particle arrays

requires therefore the distances between the particles to be
larger than several particle diameters.7 The wavelength de-
pendencies of the polarizabilities for Si particles with R
=65 nm are shown in Fig. 4. The electric and magnetic di-
pole resonances in Fig. 3�b�, i.e., the extinction maxima, co-
incide with the conditions Re��E�=0 and Re��M�=0. For
simplicity and without loss of generality, we will consider in
the following part of the paper the environment of the par-
ticle structures being air or vacuum, that is �d=1.

B. Infinite arrays

The reflection and transmission properties of two-
dimensional infinite Si particle arrays can be studied in the
two limiting cases when first, the interparticle distances, i.e.,
the periods in the x and y directions are small compared to
the incident wavelengths and second, when the array periods
are equal or larger than incident wavelengths. We first con-
sider the case of small periodicity. The polarization of the
incident wave again is chosen along the x axis. The calcu-
lated reflectance �r�2 and transmittance �t�2 are presented in
Fig. 5, showing a strong dependence on the incident wave-
length. For the wavelengths corresponding to the single-
particle resonances �cf. Fig. 3�b�� the transmission signifi-
cantly decreases, especially for the magnetic resonance at
��550 nm, where only 10% of the incident energy is trans-
mitted through the structure and the reflected energy in-
creases up to 50%. The absorption also noticeably increases
at the resonant conditions, see the curve marked with R+T in
Fig. 5. For large wavelengths outside the resonant region
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FIG. 3. �Color online� �a�
Scattering efficiency spectra of Si
spherical particles with the radius
R located in air. �b� Extinction and
scattering spectra of a Si particle
�R=65 nm�. The arrows indicate
the electric dipole �ed� and mag-
netic dipole �md� contributions to
the total efficiencies.
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FIG. 4. �Color online� Electric �E and magnetic �M polarizabil-
ities for a Si spherical particle of radius 65 nm located in air ��d

=1�. Here the electric polarizability was divided by �0.
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almost all incident electromagnetic energy is transmitted
through the array.

From the expression �22� one sees that the reflection be-
comes negligibly small if the effective electric and magnetic
polarizabilities are equal to each other, including the real and
imaginary parts. Indeed, the spectrum of the effective polar-
izabilities shown in Fig. 6 explicitly demonstrates that there
is a wavelength when the electric and magnetic polarizabil-
ities almost coincide, see the black arrows in Fig. 6. At this
spectral position the reflection is negligibly small �Fig. 7�.
Note that if we consider increasing wavelengths the negli-
gible reflection follows just after the reflection maximum,
i.e., the reflection spectrum contains a sharp transition be-
tween the maximum and minimum reflection. This behavior
is connected with coupling between the two scattering chan-
nels like physical systems with the Fano resonant responses
when the interference of different excitation pathways can
occur resulting in the effect of electromagnetically induced
transparency.51 The position and width of this transition on
the wavelength scale depends, in particular, on the particle
size as it is demonstrated in Fig. 7 where particle radii of
R=55 nm, R=65 nm, and R=75 nm have been considered.

Comparing the curves depicted in Figs. 4 and 6 it be-
comes clear that the radiative interaction between the par-
ticles in the structures with periods smaller than the incident
wavelength only weakly perturbs the single-particle polariz-

abilities. So the scattering is determined by the scattering
properties of the individual particles and the significant re-
duction in the reflection �Fig. 7� connects with the suppres-
sion of backward scattering by every particle in the
structure.46 It is also obvious that for wavelengths larger than
the magnetic resonance, the real and imaginary parts of �ef f

M

and the imaginary part of �ef f
E quickly become small com-

pared to the real part of �ef f
E . Consequently, it would seem

that in this spectral range the scattering process should be
determined by the electric dipoles of the particles only. How-
ever, taking into account the inequality �26�, there exists a
boundary wavelength when this inequality is not fulfilled
anymore and the dipole approach is inapplicable for wave-
lengths larger than the boundary. The boundary wavelength
shifts to larger wavelengths with increasing array period
�Fig. 8�. For example, a structure with periodicity D
=200 nm �dashed-dotted curve in Fig. 8� the boundary
wavelength is equal to approximately 450 nm whereas for a
structure with D=300 nm it is equal to 625 nm. Importantly,
if the boundary wavelength is larger than the magnetic reso-
nant wavelength the inaccuracy of the dipole approximation
for large wavelengths is small, that is �r�2+ �t�2−1�1 �see
Fig. 5 for �600 nm�.

As indicated in Sec. I, when the wavelengths of the scat-
tered light are commensurate to the array periods in x and y
directions and are in the spectral range of the individual par-
ticle resonances constituting the array, the extinction spectra
can contain additional narrow resonant peaks due to the dif-
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FIG. 6. �Color online� Effective polarizability spectra of infinite
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fraction coupling between the resonant particles. This is in
analogy to the LSPR for metal particles8,40 and occurs in the
same way in Si particle arrays with corresponding periodic-
ity. Figure 9 shows the extinction cross sections per one par-
ticle calculated for Si particle arrays with periods of D
=485 nm and D=565 nm. The particle radius is R
=65 nm as before. The electric and magnetic dipole cross
sections, Eq. �8�, are plotted separately and compared with
the total extinction cross section for the case D=300 nm,
when no additional diffractive resonance appears. From Fig.
9�a� we see that the extinction spectrum contains additional
narrow resonance corresponding only to the electric dipole
response �	ext

E �. The resonance is presented for the case when
the period of the square array is smaller than the wavelength
of the magnetic resonance but larger than that of the electric
resonance. However, the magnetic resonance shows a red-
shift compared with the case of small interparticle distance.

If the period of a structure is larger than the wavelength
corresponding to the magnetic resonant response, the extinc-
tion spectrum will contain additional resonant peaks, includ-
ing a peak corresponding only to the magnetic dipole reso-
nance �Fig. 9�b��. These additional peaks in the extinction
curves are obtained when the resonant conditions �14� and
�15� are realized. The detail analysis of the mechanisms of
the effect can be found in Refs. 7 and 8. Here, we note that
these resonances are connected with divergences of the terms
Gxx

0 and Gyy
0 in Eqs. �14� and �15� as a function of wave-

length for a fixed array period D, and also with the behavior
of Re�1 /�E� and Re�1 /�M�. The Fano-type asymmetric pro-
files of the additional resonances are the consequence of cou-

pling between individual particle scattering and multiple
light scattering by all structure �see also Fig. 10�.

The additional, diffractive resonances associated with the
electric and magnetic dipoles can be excited independently
due to the conditions �14� and �15� since Gxx

0 and Gyy
0 only

coincide in case of arrays with a square elementary cell. If, in
the general case, the lattice elementary cell is rectangular
having different periodicities in x and y directions, the sums
Gxx

0 and Gyy
0 will diverge at different wavelengths.

Thus, in order to controllably excite the additional, struc-
tural resonances associated with the electric and magnetic
dipoles the interparticle distances in x and y directions that is
perpendicular to the magnetic �electric� dipole orientation
have to be adjusted. The polarization of the incoming wave
is again set along the x axis. This possibility of controllable
and selective excitation of electric and magnetic structural
resonances is illustrated in Fig. 10�a�, showing the extinction
spectra of arrays with different elementary cells. For the case
of a square array with Dx=Dy =300 nm only the resonances
corresponding to the electric and magnetic dipole responses
are visible. If only Dx is increased to 580 nm the additional
resonance, i.e., the sharp peak at ��590 nm is associated
with the magnetic dipole response. If the periodicity only in
the y direction is increased, e.g., Dy =480 nm and Dx
=300 nm, the additional peak at ��550 nm is associated
with the electric dipole response. Increasing the elementary
cell dimensions in both directions, Dx=580 nm and Dy
=480 nm, we see two peaks associated with the electric and
magnetic resonances �the dashed-dotted curve in Fig. 10�a��.
However, the positions of the peaks shift to the blue side in
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comparison with the cases when only one additional reso-
nance is excited.

Additionally, the values of the total extinction at the
points of single-particle electric and magnetic resonances de-
pend on Dx and Dy. For example, in the case of Dx
=300 nm and Dy =480 nm, when only the diffractive reso-
nance associated with the electric dipoles is realized, the ex-
tinction at the wavelength of the particle magnetic resonance
noticeably increases, whereas the extinction at the point of
the electric particle resonance decreases. For the case of Dx
=580 and Dy =300 nm when the diffractive resonance asso-
ciated with the magnetic dipoles is excited, we have the in-
verse situation. If the diffractive resonances associated with
both dipoles can be excited the extinction values at the points
of both, electric and magnetic dipole resonances of single
particles decrease �Fig. 10�a��. Notice that due to the diver-
gence of the sums Gxx

0 and Gyy
0 , the extinction noticeably

decreases for the wavelengths equaling to the array period in
the corresponding direction �Fig. 10�a��.

Not only the position of the diffractive resonances de-
pends on the particle periods but also the width of these
resonances. If we consider particle arrays with increasing
periods into the x direction but retaining the period into the y
direction �Fig. 10�b��, we see that the diffractive resonance
associated with the magnetic dipole shifts to the red side and
gets narrow.

C. Finite-size arrays

In this section we discuss the properties of Si particle
arrays consisting of a finite number of particles. As in the
previous section we consider a linearly polarized light wave
propagating in the positive z direction with polarization
along the x axis. The extinction spectra for the cases, when
the interparticle distance in a finite square array is smaller
than the wavelength range under consideration, are shown in
Fig. 11. As can be seen from the graphs, the two resonant
peaks in Fig. 11�a� do not change their spectral positions
with change in the particle spacing and particle number in
the arrays, indicating that they correspond to the single-
particle resonances, cf. Figs. 3�b� and 11�a�. As in the case of
infinite arrays the transmission through the finite arrays is

significantly decreased at the resonant wavelengths due to
strong forward-directed scattering �Fig. 11�b��.

If the particle separation in finite arrays is larger than the
wavelengths corresponding to the particle dipole resonances,
the extinction spectra again show the additional diffractive
peaks associated with the electric or magnetic particle di-
poles. Analogously to the case of infinite arrays, by choosing
separately the particle spacing in x and y directions one can
obtain the diffractive resonances of the electric and magnetic
types at different wavelengths, as demonstrated in Fig. 12. If
the separation between the particles is small, the extinction
spectrum exhibits only the particle dipole resonances, that is
the curve corresponding Dx=Dy =300 nm in Fig. 12.

By increasing the spacing in x direction we can obtain the
additional diffractive resonance associated with the particle
magnetic dipole, occurring as a broad peak at �=590 nm on
the curve calculated for Dx=580 nm and Dy =300 nm in
Fig. 12. Note that in this case the extinction at the particle
magnetic resonance is decreased compared to the case of
Dx=Dy =300 nm.

If the spacing is increased only in y direction, the diffrac-
tive resonance associated with the particle electric dipoles
can be excited. The curve for Dx=300 nm and Dy
=480 nm in Fig. 12 features an additional peak at �
=550 nm, corresponding to the diffractive electric dipole
resonance. Importantly, the resonance value of the extinction
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for the particle magnetic resonance is also increased in this
case.

Following the developed theoretical approach, the particle
dipole moments in finite arrays should have nonzero longi-
tudinal components perpendicular to the array plane. These
components create longitudinal electromagnetic field in the
near-field region, e.g., the electric dipoles generate the elec-
tric near field and the magnetic dipoles generate the magnetic
near field. In resonance, the values of the components can
significantly grow, hence increasing the intensity of the near
fields. Note that the z components of magnetic dipoles are
determined by the in-plane components of the electric di-
poles and vice versa, Eqs. �27� and �28�. Taking into account
that the diffractive resonances associated with different di-
poles can be excited independently, resulting in the resonant
increase in particle electric or magnetic dipoles, we obtain
the possibility to intensify the electric and magnetic near
fields in the system by adjusting the corresponding param-
eters. Figure 13�a� demonstrates that the maximum of the
magnetic dipole z components ��mz�� distributed in an array
of 441 particles noticeably increases at the wavelength cor-
responding to the diffractive resonance associated with elec-
tric dipole, visible as the sharp peak around 500 nm on the
curve calculated for Dx=300 nm and Dy =480 nm in Fig.
13�a�. This spectral position also corresponds to the diffrac-
tive peak on the curve with the same parameters as in Fig.
12. Moreover, the value of the z-component maximum is
larger than the magnetic dipole of a single particle in free

space at the same wavelength �Fig. 13�a��. For the system
without diffractive resonances the values of mz are small �the
curve Dx=Dy =300 nm in Fig. 13�a��.

This behavior is repeated for the electric dipole z compo-
nent pz but now the largest value of �pz� in the system corre-
sponds to the diffractive resonance associated with the par-
ticle magnetic dipole �Fig. 13�b��. The spatial distributions of
magnetic and electric near fields in the Si particle arrays for
the conditions of magnetic and electric diffractive resonances
are shown in Figs. 14�a� and 14�b�, respectively.

The creation of the strong longitudinal electric and mag-
netic near-field components arises as a boundary effect due
to the finite size of the array. As a consequence, the maxi-
mum of the dipole longitudinal components is concentrated
on the boundary of the structures. The maximum of �mz�
originates at the array boundary parts being perpendicular to
the electric polarization of incident waves. Correspondingly,
the maximum of �pz� is reached on the array boundary parts
which are perpendicular to the incident magnetic field polar-
ization. Thus, changing the polarization of the incident light
provides a unique possibility to change and control the near
fields in the system on the subwavelength scale.

D. Influence of oxide shells

So far we considered pure silicon particles. However, in
realistic experimental situations the particles are mostly cov-
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FIG. 13. �Color online� Maximal magnitude of longitudinal �a�
magnetic mz and �b� electric pz dipole components in two-
dimensional arrays of 21�21=441 particles. Dx, Dy are the particle
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FIG. 14. �Color online� Distributions of z-component magni-
tudes of induced �a� magnetic and �b� electric dipoles �a.u.� in two-
dimensional arrays of 21�21=441 particles. �a� Dx=300 nm, Dy

=480 nm, � corresponds to the global maximum of the curve in
Fig. 13�a� with the same Dx, Dy. �b� Dx=580 nm, Dy =300 nm, �
corresponds to the global maximum of the curve in Fig. 13�b� with
the same Dx, Dy.
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ered by a thin dielectric layer of thermal silicon oxide of
several nanometers thickness. Using the Mie theory for
coated spheres,49 we can apply the developed approach to
study the optical response of particle arrays consisting of
coated Si nanospheres. In the frame of the presented theoret-
ical model, the coating can consist of an arbitrary material.

To study the influence of such dielectric shells on the
optical response and especially to simulate the effect of the
thermal oxide layer, we regard the role of thin dielectric
shells with a dielectric constant of 2.25 in the extinction
spectrum of such a shell-particle array. Figure 15 demon-
strates the effect of shells with two different thicknesses of
10 and 30 nm on the extinction spectra in comparison to the
case of uncoated spheres. For simplicity, we assume an infi-
nite array consisting again of Si nanospheres with a radius of
R=65 nm. The particle array under consideration has the
periodicities of Dx=580 nm and Dy =480 nm in the x and y
directions, respectively, showing the magnetic and electric
diffractive resonances.

One can see that the dielectric shell influences predomi-
nantly the positions of the diffractive resonances. By increas-
ing the thickness of the dielectric coating, the resonances are
redshifted and broadened, whereas the influence of the shells
on the magnetic dipole resonances is weaker than on the
electric dipole ones. For relatively thin shells �10 nm and
smaller�, which could correspond to the natural oxide layers,
the shell influence is weak for the both types of the reso-
nances �Fig. 15�. However, with increasing shell thickness
the resonant shifts also increase and can be experimentally
resolved.

As a result, the particle arrays provide a measurable sen-
sitivity to the presence of even thin dielectric coatings due to
the sharpness of the additional diffractive resonances. This
effect could be used for creation of sensor devices on the
base of the functionalized Si-particle structures with the abil-
ity to selectively bind certain molecules. The sensitivity of
such a sensor device can be further enhanced when the elec-
tric and magnetic diffractive resonances are measured simul-
taneously.

IV. CONCLUSION

The coupled-dipole equation approach developed for ar-
rays of electric and magnetic dipole particles has been ap-

plied to study the optical response of two-dimensional peri-
odic structures of Si particles under the condition of normal
light incidence. The applicability of the approach for differ-
ent interparticle distances in the arrays was discussed. It was
demonstrated that the optical response of a single spherical
Si particle of certain dimensions can be considered as elec-
tromagnetic fields radiated by the induced electric and mag-
netic dipoles. The polarizabilities of the particles were deter-
mined by Mie theory. Infinite and finite particle arrays have
been considered. The reflection and transmission spectra for
the arrays with particle spacing, being smaller than the inci-
dent light wavelength, have been calculated and studied. The
condition of negligibly small reflection �induced transpar-
ency� has been obtained. The possibility of strong suppres-
sion of light transmission through the finite-size particle
arrays at the magnetic dipole resonance has been demon-
strated. Moreover, it was found that the induction of the
magnetic dipoles in the particles can result in additional dif-
fractive magnetic-resonant peaks in the extinction spectra of
the particle arrays when the distances between the particles
are equal to the incident light wavelengths which in turn are
larger that the resonant wavelengths for the electric and mag-
netic dipoles of single particles. The additional peaks had the
Fano-type resonant profiles. It was shown that strong longi-
tudinal electric and magnetic fields can be generated on the
boundary of the finite-size Si-particle arrays at the diffractive
resonances. It was found that the diffractive resonances of
the particle arrays are noticeably shifted to the red spectrum
direction if the particles are covered by a thin dielectric shell.
The obtained results directly demonstrate that the Si-
nanoparticle arrays have interesting and very important opti-
cal properties with the strong application potentials in nano-
photonics and metamaterials.
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APPENDIX: CALCULATION OF THE DIPOLE SUMS

Let us consider

Gxx
r = �

j=1




Gxx�r,r j�, gz
r = �

j=1




gz�r,r j� �A1�

in the far-field approximation.31 Using

Gxx�r,r�� = �kd
2 −

�2

�x2	 eikd�r−r��

4�kd
2�r − r��

, �A2�

gz�r,r�� =
�

�z

eikd�r−r��

4��r − r��
, �A3�

and the Weil presentation of a spherical wave52
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FIG. 15. �Color online� Extinction cross sections per one par-
ticle of infinite pure Si and Si+shell particle structures as a function
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eikdr

r
=

i

2�
�

−



 1

w
ei�ux+vy+w�z��dudv , �A4�

where w=�kd
2−u2−v2, one can write

Gxx
r =

i

8�2kd
2�

j=1


 �
−



 kd
2 − u2

w
ei�K�r�−r�

j�+w�z��dudv ,
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r =
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8�2�
j=1
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−





ei�K�r�−r�
j�+w�z��dudv , �A5�

where r� = �x ,y�, r�
j = �xj ,yj�, and K= �u ,v�. In the expression

for gz
r �+� corresponds to z�0 and �−� to z0. Transmitting

to a sum over reciprocal-lattice vectors L of the direct par-
ticle lattice by

�
j=1




e−i�uxj+vyj� =
�2��2

SL
�
L




��− K − L� , �A6�

one obtains

Gxx
r =

i

2SLkd
2�

L



kd

2 − Lx
2

�kd
2 − L2

e−iLr�+i�kd
2−L2�z�;

gz
r =

�1

2SL
�
L




e−iLr�+i�kd
2−L2�z�. �A7�

If the wavelength in the medium with �d is larger than the
lattice spacing D then the all terms of the sums, except the
zero term L=0, are evanescent. This means we have a far-
field approximation,

Gxx
r �

i

2SLkd
e�ikdz,

gz
r �

�1

2SL
e�ikdz, �A8�

the upper sign for negative z and the lower sign for positive
z. In this approximation we also have

Gzx
r = 0, gx

r = 0. �A9�
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