
Abstract. Physical mechanisms and theoretical models of laser
ablation are discussed. For various mechanisms, typical asso-
ciated phenomena are qualitatively regarded and methods for
studying them quantitatively are considered. Calculated results
relevant to ablation kinetics for a number of substances are
presented and compared with experimental data.

1. Introduction

Several thousand journal publications are devoted to laser
ablation, and it has been the topic of many international
conferences (see, for instance, Refs [1 ± 7]). In the physical
literature the term `ablation' (which has its origin in the Latin
ablatio Ð taking away, removal) denotes the aggregate of
complex physicochemical processes responsible for removing
(carrying away) material from the surface or bulk of a solid.
Following the meaning of the Latin root, any loss1 may be

referred to as ablation. That is why the term `laser ablation' is
sometimes interpreted in the broad sense to denote any laser-
induced material removal, including the removal of volatile
products of chemical etching and even the electron emission
(see editor's foreword to book [4]).

An excessively narrow interpretation of the term can also
be encountered in the scientific literature, when the term
`ablation' is used in reference to the material removal caused
by the direct chemical bond breaking under the action of
light [8]. As a matter of fact, the term `ablation' is inter-
disciplinary and has been used in physics for denoting the
removal of material in an electric discharge, in the flow of a
hot gas, plasma, etc. long before the advent of lasers. In
geology this term is used to denote the reduction of the mass
of a glacier or a blanket of snow due to melting and
evaporation (see, for instance, Ref. [9]).

The overwhelming majority of researchers (see, for
instance, Refs [3, 5, 6, 10]) utilize the term laser ablation in
reference to the damage of a solid material, similar to
evaporation or sublimation, which is usually complicated by
the occurrence of a condensed phase in the disintegration
products. An analysis of the extensive literature on laser
ablation allows us to recognize three distinguishing (restric-
tive) features of this process: (i) ablation is directly related to
the absorption of laser energy in the material; (ii) in principle,
ablation can proceed in vacuum or an inert medium, and
(iii) laser ablation results in the production of a vapor ± gas
(vapor ± plasma) plume of ablation products. These charac-
teristic features are discussed in detail, for example, in the
monograph [10].

On the strength of the first restriction, the processes
associated, for instance, with mechanical material failure
under the action of a shock generated by a laser in the
external medium, be it gas or liquid, do not fall into the
category of laser ablation. This restriction also applies to the
plasma etching of a material in the optical breakdown of the
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ambient medium. The second limitation excludes laser-
induced chemical etching [10].

Lastly, the third restriction does not allow the term laser
ablation to be applied to the mechanical failure occurring in
the direct absorption of energy in the disintegrating material
if the disintegration products do not make up a plume (an
example of such a process is the `crumbling' of a material
through the formation of microcracks [11]). Many authors
also emphasize that laser ablation is of threshold character
with respect to the fluence 2 F, i.e. an appreciable removal of
the material takes place only provided F > Fth (see, for
instance, Refs [10, 12 ± 14]).

The pioneering investigations of laser ablation were
performed more than 30 years ago [15] (see also the
monographs [16, 17], the articles [183, 184] and references
cited therein). Familiarizing oneself with the extensive
scientific literature shows, however, that more recent investi-
gations, including many of the latest papers, replicate
(sometimes not without errors) the well-known results of the
1960s and 1970s. Moreover, papers significant for under-
standing the physics of the phenomenon often pass unnoticed
against a background of the applied papers.

The aim of this review is to endeavor to systematically
outline the basic results of investigations into the physics of
laser ablation and to highlight, in particular, the advances
made in recent years. Because of the breadth of the problem,
the enormous number of publications and the diversity in
their scientific level, we are forced to restrict the review to the
consideration of two issues: the mechanisms of laser ablation
(with regard to the restrictions in apprehension of the term)
and the physical processes within the plume of ablation
products. Both these issues are important to different
practical applications. Our principal concern will be with the
quantitative methods for investigating ablation, which make
it possible to obtain results allowing a direct comparison with
experiments.

2. Thermal model

2.1 Qualitative results
The first investigations of laser ablation [15 ± 17] primarily
concerned the response of absorbingmedia to the radiation of
cw lasers and lasers with a millisecond output pulse operating
in the free running mode, with quasi-stationary ablation
regimes receiving the bulk of attention. Relying on the results
of these investigations, the so-called thermal model of laser
evaporation [15, 18, 19] was formulated in the 1960s, which
has not undergone substantial changes. The papers on laser
evaporation were reviewed on the basis of the thermal model
in Refs [12, 20, 21].

The rapid progress in experimental techniques had the
effect that even from the early 1980s ablation research was
pursued primarily with laser pulses of the nanosecond range
[10]. During the last decade, increasingly more attention has
been paid to the ablation produced by ultrashort laser pulses
of the picosecond and femtosecond ranges (see Refs [23 ± 25]);
the quasi-stationary mode is not attained for such pulses.

One of the first questions that an experimenter has to
answer in the course of investigations is the question of the
laser ablation mechanism [26]. In particular, it is vital to

understand whether experimental data can be interpreted in
the context of the thermal model or other mechanisms (the
photochemical bond breaking, nonequilibrium molecular
excitation, etc.) play an important part in the process
considered. To do this requires verification in some way if
the laser ablation rate obeys conventional `thermal' behavior.

The kinetics of thermal evaporation of condensed bodies
is described by the relationship

v � v0 exp
�
ÿTa

T

�
: �2:1�

The constants v0 and Ta in formula (2.1) are borrowed from
reference data (see, for instance, handbook [27]), whose
accuracy is not high. (The derivation and a comprehensive
discussion of formula (2.1) may be found in Ref. [12].)

Under laser pulse irradiation, the temperature T and the
laser ablation rate v vary with time. Should the dependences
T�t� and v�t� be determined in experiments with a sufficiently
high accuracy, the answer to the question of the laser ablation
mechanism can be provided by analyzing these dependences
in Arrhenius coordinates:

ln v � f

�
1

T

�
;

in which a straight line corresponds to the thermal process.
However, the difficulty is that direct measurements ofT�t�

and v�t� are extremely hard to accomplish in experiments with
short laser pulses. As a rule, experimenters determine another
dependence with a high enough accuracy, namely, the layer
thickness h of the material removed per pulse as a function of
fluence F [10]:

h � h�F� ; h �
�1
0

v�t� dt ; F �
�1
0

I�t� dt ; �2:2�

where I�t� is the intensity of incident laser radiation. The
integral curve h � h�F� depends only slightly on the change in
the ablation mechanism. That is why the experimental data
can be satisfactorily described employing conservation laws
which take essentially no account of the kinetics of the process
investigated.

The qualitative behavior of the h � h�F� dependences is
easy to analyze. For materials strongly absorbing the laser
radiation, these dependences contain, as a rule, three
characteristic regions, which are specific of the subthreshold
process �F < Fth�, the ablation in the immediate vicinity of
the threshold �F � Fth�, and the mode of developed ablation
�2:5Fth < F < 5Fth�.

In typical cases, the surface temperature T peaks at some
point in time tmax (of the order of the pulse length tl) and
varies smoothly in the vicinity of the peak. One can therefore
write out

T � Tmax ÿ 1

2
T 00�tmax��tÿ tmax�2 :

Furthermore, in the cases of practical interest one can
recognize that Ta 4T in formula (2.1). [This inequality
determines in fact the range of applicability for formula
(2.1).] That is why the integral of the laser ablation rate,
which appears in expression (2.2), can be calculated by the
saddle-point method. As a result we obtain the layer thickness

2 We take advantage of the term `fluence' in lieu of the equivalent term

`irradiation dose' [J cmÿ2] adopted in the Russian scientific literature.
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of the material removed in one pulse:

h � A exp

�
ÿ Ta

Tmax

�
; A �

������
2p
p

v0tl

�
Tmax

Ta

�1=2

: �2:3�

In the range of temperatures typical of laser ablation, the
weak temperature dependence of the parameter A can be
neglected.

In the majority of experiments on laser ablation, the
fluence F � I0tl is varied through the variation of the
intensity (neutral density filters, focusing), while the pulse is
fixed. In this case, for subthreshold fluences �F < Fth�we can
assume with a good accuracy that Tmax / F and transform
relationship (2.3) to the Arrhenius form

h � A exp

�
ÿB

F

�
; �2:4�

where A and B are the constants. The presence of `Arrhenius
tails' is quite often regarded as a forcible argument in favor of
the thermal mechanism of laser ablation (see, for instance,
Ref. [28]), despite the fact that such tails may occur in other
models, too [29].

Above the threshold of laser ablation �F > Fth�, for
relatively short laser pulses and high radiation absorption
coefficients there occurs an intermediate linear dependence of
the evaporated layer thickness on the fluence, which follows
from the energy balance [10]:

h � b�Fÿ Fth� ; b � 1ÿ R

L
; �2:5�

where R is the radiation reflection coefficient, and L is the
latent heat of vaporization per unit volume of a solid.

Lastly, the screening of the evaporable surface by the
plume of ablation products exerts a significant influence
on the ablation process for high laser fluences
�2:5Fth < F < 5Fth�. Assuming the optical thickness of the
screening plume to be proportional to the mass evaporated, it
is easy to show that the fluence that finds its way to the solid
surface, taking into account the radiation absorption in the
plume, is given by

Fa � F exp �ÿagh� ;

where ag is the effective radiation absorption coefficient of the
vapor normalized to the density of the solid3. We substitute
Fa for F in formula (2.4) and solve the resultant equation for
F to obtain

F � B exp �agh� lnÿ1 A

h
: �2:6�

Equation (2.6) was proposed in Ref. [29] as an interpola-
tion formula for describing the dependence of the ablated
thickness on the laser fluence over a wide range of variation of
the latter quantity. One can see from Fig. 1 that this equation
agrees well with available experimental data. For small
fluences, Eqn (2.6) passes into Eqn (2.4). For high fluences,
when the screening plays a significant role, it leads to a
logarithmic dependence

h � 1

ag
ln

F
Fg

; Fg � B

ln �agA� : �2:7�

Although all three characteristic dependences Ð the
Arrhenius dependence (2.4) in the subthreshold range, the
linear one (2.5) in the vicinity of the threshold, and the
logarithmic one (2.7) in the screening region Ð were derived
in the foregoing from qualitative considerations, these
dependences also follow from an extended consideration of
the dynamics of the process in the framework of the thermal
model [30]. These three ranges are conveniently analyzed
more closely by going over to the corresponding coordinates
in which the h�F� dependences are represented by straight
lines (Figs 1d ± f ).

The weak dependence of the integral curves on the
detailed kinetics of laser ablation has the effect that the plots
h � h�F� depicted in hundreds of papers prove to bear little
information when it comes to determining the physical
mechanism responsible for the ablation of one or other
specific material. Reaching a conclusion of this kind always
requires additional information, which may be extracted, for
instance, from the data on the composition and expansion
velocities of laser ablation products. In this case, the evidence
on the time variation of the surface temperature of the
material experiencing ablation would be most informative.
These data, however, are hard to obtain. Paper [31] is likely an
exceptional example where the surface temperature of
polyimide was measured with its ablation produced by the
nanosecond pulse of an excimer laser.

2.2 Dynamics of laser ablation.
Calculations assisted by the moments method
Since the temperature of laser ablation is hard to measure
with a high accuracy, the task of its exact calculation takes
on great significance. This problem is rather complicated.
Calculations based on the solution of the linear heat
conduction equation are oversimplified and sometimes
inappropriate even for qualitative estimates. By contrast,
numerical calculations involving the difference methods for
partial differential equations are too cumbersome and
unsuitable for a rapid analysis of the experimental data.
The moments method proves to be best suited to
quantitative calculations of laser ablation temperature.
This method permits the complex nonlinear problem of
solving partial differential equations to be reduced to the
integration of a system of ordinary differential equations.
With this method it is easy to take into account the
temperature dependences of optical and thermal properties
of the material, the effects caused by radiation absorption
in the vapor, the phase transitions (evaporation, melting,
structural transitions), and also the arbitrary laser pulse
shape [30, 32, 33].

Let us consider the transient laser ablation in the one-
dimensional case. This case is realized when a target is
irradiated by a sufficiently short laser pulse. Let the plane
ablation front travel in the z-direction with a velocity v � v�t�
which changes rapidly during the laser irradiation.

The heat conduction equation is conveniently written in
the ablation-front frame of reference:

qH
qt
� v qH

qz
� q
qz

�
K
qT
qz

�
ÿ qI
qz
� B�T � ; �2:8�

where

H�T � � r
�T
T1

c�T1� dT1 �2:9�
3 Other screening models were considered in Refs [183, 16].
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is the enthalpy of a unit volume of the solid, c�T � is the
specific heat capacity of the solid, K�T � is the thermal
conduction coefficient, and T1 is the initial temperature.
The density r of the solid is assumed to be constant, and B�T �
denotes the right-hand side of Eqn (2.8).

The absorbed laser radiation intensity distribution in the
bulk of a solid is defined by the equation

qI
qz
� ÿaI ; I

���
z� 0
� Is : �2:10�

Here, a is the absorption coefficient, and Is is the absorbed
laser radiation intensity at the ablation front �z � 0�.

The intensity Is at the ablation front depends on the
temporal form of the laser pulse I � I�t�, the surface
temperature Ts � T �z � 0; t�, and the layer thickness of an
evaporated material:

h�t� �
� t

0

v�t1� dt1 ;

which screens the ablation front:

Is � I�t�A�Ts� exp �ÿagh� ; �2:11�
where A�Ts� � 1ÿ R�Ts� is the absorptivity, R is the
reflectivity, and ag is the absorption coefficient of the vapor
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Figure 1. Thickness of the material (polyimide) ablated under excimer ArF-, KrF-, XeCl-, and XeF-laser irradiation, reproduced from the data of

Ref. [26], in Arrhenius (a), linear (b), and logarithmic (c) coordinates. The dashed lines represent the best approximation by interpolation formula (2.6).

The parameters of calculations for wavelengths of 193, 248, 308, and 351 nm, obtained by least-square fit, are as follows:A � 883 547, 29 716, 87 097, and

32 562; B � 152:56, 176.13, 370.03, and 760.92 mJ cmÿ2; ag � 2� 105, 1:22� 105, 5:5� 104, and ÿ1:9� 104 cmÿ1. (d ± f ) Enlarged view of the regions

wherein experimental points follow the Arrhenius (2.4), linear (2.5), and logarithmic (2.7) dependences (straight dashed lines).
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(ablation products) normalized to the solid density. The
velocity of the ablation front is defined by formula (2.1) in
which T � Ts�t� should be substituted.

All optical and thermal parameters in equations (2.8) ±
(2.11) and also the preexponential factor in formula (2.1) may
arbitrarily depend on the temperature.

The heat conduction equation (2.8) should be comple-
mented with initial and boundary conditions. The boundary
condition at the ablation front relates the heat flux Js at the
phase interface to the expenditure of energy for evaporation
[16]:

K
qT
qz

����
z� 0

� v�LÿHs �H �v�s � � ÿJs : �2:12�

Here, L is the latent heat of evaporation per unit volume of
the solid, Hs � H�Ts� is the enthalpy of a unit volume of the
solid at the phase interface, and also

H �v�s � r
�Ts

T1
c �v��T1� dT1

is the vapor formation enthalpy referred to a unit volume of
the solid, and c �v��T � is the heat capacity of the vapor at
constant pressure. The second boundary condition
T
��
z!1� T1 and the initial condition T

��
t� 0
� T1 are

obvious.
In view of the relationship (2.9) among T and H, the

boundary condition (2.12) can be rewritten as

qH
qz

����
z� 0

� ÿ Js
ws
; �2:13�

where w � K=cr is the thermal diffusivity, and ws � w�Ts�. The
model described by Eqns (2.8) ± (2.13) does not take into
account some effects, for instance, the density variation
r � r�T � caused by the thermal expansion of the solid.
However, the discarded effects are, as a rule, small, and
therefore the model outlined in the foregoing is appropriate
for the quantitative investigation of transient ablation.

The basic idea of the moments method was outlined in
detail in the monographs [34 ± 36]. The exact solution of the
boundary-value problem (2.8) ± (2.13) turns Eqn (2.8) into an
identity. If some trial function H � Hp�z; t� is substituted in
lieu of the exact solution, the identity is violated with the
consequential formation of a residual function Res �Hp�:

qHp

qt
ÿ B�Tp� � Res �Hp� : �2:14�

The trial function Hp�z; t� may be employed as an
approximate solution if it is selected in such a way that the
integral relations (conservation laws) for momenta Mn are
exactly fulfilled:

dMn

dt
ÿ
�1
0

z n B
�
T
ÿ
Hp�z; t�

��
dz � 0 ; �2:15�

Mn �
�1
0

zn Hp�z; t� dz :

The total number of Eqns (2.15) should be equal to the
number of unknown functions employed to construct the trial
function Hp�z; t�. Equations (2.15) minimize the residual
function Res �Hp� along the z n-directions in the functional
space. The moments method has much in common with the

well-known Galerkin method. Both of them are the special
cases of the weighted residues method. An important point is
that the moments method ensures the fulfillment of some
integral relations which have a clear physical meaning and
constitute the system of conservation laws. For instance,
Eqn (2.15) for the M0 moment is the total energy conserva-
tion law, and the equation for the M1 moment characterizes
the local energy balance.

In papers [30, 32, 33], advantage was taken of the system
of equations for the first two moments of the enthalpy
distribution. The surface temperature Ts�t� (or the related
enthalpy Hs � H

�
Ts�t�

�
of the solid at the boundary z � 0)

and the spatial scale l�t� of the enthalpy distribution were
selected as two time-dependent functions. These two quan-
tities yield the main body of information on the enthalpy
distribution in the surface layer of the solid, which in turn
governs the dynamics of thermal ablation.

In accordance with relations (2.15) we introduce two
moments of the enthalpy distribution:

M0�t� �
�1
0

H�z; t� dz ; M1�t� �
�1
0

zH�z; t� dz : �2:16�

We multiply relations (2.8) by z n (where n � 0; 1) and
integrate them term by term taking into account the
boundary conditions to obtain the following system of
equations:

dM0

dt
� ÿvHs � Js � Is � ÿv�L�H �v�s � � Is ;

�2:17�
dM1

dt
� ÿvM0 �

�Ts

T1
K�T � dT� aÿ1Is :

It should be emphasized that on the right-hand side of the
second of Eqns (2.17) there is an integral typical for the
Kirchhoff transformation [37].

The proper choice of the trial function is of crucial
importance in the moments method. In works [30, 32, 33],
this function was adopted as

Hp�z; t� � 1

1ÿ al

��
Hs ÿ Jsl

ws

�
exp�ÿaz�

ÿ
�
alHs ÿ Jsl

ws

�
exp

�
ÿ z

l

��
: �2:18�

A trial function of the form (2.18) satisfies the boundary
conditions for z � 0, z � 1 and ensures the fulfillment of the
obvious condition Hp�z � 0; t� � Hs�t�. The first term in
expression (2.18) describes the variation of the enthalpy
distribution related to the radiation penetration depth, while
the second term describes the effects related to thermal
conduction. The function l�t� is the enthalpy distribution
spatial scale (the heated layer thickness or the characteristic
thermal length).

Substituting expression (2.18) into Eqn (2.16) we arrive at
the following expressions for the moments:

M0 � �l� aÿ1�Hs ÿ aÿ1l
Js
ws
;

�2:19�
M1 � �l 2 � aÿ1l� aÿ2�Hs ÿ �l� aÿ1�aÿ1l Js

ws
:
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Let us introduce expressions (2.19) into Eqns (2.17) to
obtain the differential equations for the functions Ts�t�
and l�t�. Recall that the Js and Hs quantities are related to
Ts by equations (2.9) and (2.12). It is worth noting that we
need not solve these equations for the derivatives dl=dt and
dTs=dt and write them out explicitly when advantage is
taken of a high-level software, for instance, of the
`Mathematica' package [38], to numerically solve the
resultant equations.

The system of equations for the surface temperature and
the heated layer thickness should be complemented with the
equation describing the variation of the ablation layer
thickness:

dh

dt
� v � v0 exp

�
ÿTa

Ts

�
; �2:20�

which is required for describing the screening effect.
Therefore, the problem reduces to a system of three

ordinary differential equations for the functions Ts�t�, l�t�,
and h�t�, which should be numerically integrated with the
corresponding initial conditions. This approach proves to be
more flexible and convenient for the analysis of experimental
data than the direct numerical solution of the boundary-value
problem employing finite difference or finite element meth-
ods. An investigation of different problems on laser ablation,
performed in Refs [30, 32, 33], reveals that the moments
method maintains an accuracy of about 20 ± 30% and allows
easy inclusion of the temperature variations of c�T �, K�T �,
and A�T �.

Figure 2 gives an example of the computational
investigation into the ablation kinetics of polyimide
exposed to the radiation of excimer lasers with different
wavelengths. The temperature dependences of the thermal
parameters of the material were taken into account in the
computations. The laser pulse shape was modeled by the
function

I�t� � I0
t

tl
exp

�
ÿ t

tl

�
�2:21�

with the fluence and the characteristic time related by the
formula F � I0tl. We note that the FWHM (full width at half
maximum) of the laser pulse is tFWHM � 2:445tl. For brevity
the pulse of the form (2.21) will be referred to as the `excimer'
pulse.

One can see from Fig. 2 that the dependences of the
removed layer thickness h on the fluence F for the 350-, 308-,
and 248-nm wavelengths are adequately described in the
context of the thermal model with surface evaporation.
Notice that the temperature at the ablation front, found
from the calculations [30], agrees well with that measured in
Ref. [31]. For the 193-nm radiation, computations and
experimental data diverge significantly. It would appear
reasonable that the ablation mechanism does not reduce to
the purely thermal one in this case.

Similar calculations employing the moments method
were done for the laser ablation of metals. In Ref. [32], for
instance, a study was made of the ablation of indium
exposed to a laser pulse with a duration tFWHM � 15 ns. It
turned out that the calculated results involving the thermal
model agree nicely with experimental data over the
nanosecond range [22, 39]. At the same time, the ablation
mechanism proves to be more complicated for subpicose-
cond pulses (tFWHM � 0:5 ps). Some of the calculated results

on the laser heating dynamics and indium ablation are given
in Fig. 3.

2.3 Stationary evaporation wave
We will enlarge on some qualitative features of the thermal
mechanism of surface evaporation. These features may be
explained by the simplest example of a model with constant
thermal and optical characteristics. Simplifying the problem,
in the boundary condition (2.12) we neglect the effects related
to the discrepancy between the gas phase and condensed
phase enthalpies. The vapor will be considered transparent
for the radiation, i.e. let ag � 0. Furthermore, we assume the
absorbed radiation intensity to be constant: Is � const (a
rather long laser pulse).

Under the above-listed simplifications, the problem
reduces to the system of two ordinary differential equations
for the surface temperature Ts and the heated layer thickness
l. This system can be written out in the explicit form

dTs

dt
� F �Ts; l� ; dl

dt
� C�Ts; l� : �2:22�
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Figure 2. Laser ablation of polyimide [29]. Calculation by the

moments method (solid curves) and from experimental data [26] in

conventional (a) and Arrhenius (b) coordinates. Parameters of

calculations: t1 � 6:13 ns (the FWHM of the laser pulse is 15 ns);

v0 � 3� 106 cm sÿ1; Ta � 15:7� 103 K� 1:51 eV; T1 � 300 K;

c � 2:55ÿ 1:59 exp
��300ÿ T �=460� J gÿ1 Kÿ1; K � 1:55� 10ÿ3�

�T=300�0:28 W cmÿ1 Kÿ1; r � 1:42 g cmÿ3; L=r � 500 J gÿ1; ag � 0:45a;
l � 193 nm (triangles), A � 0:93, a � 4:25� 105 cmÿ1; l � 248 nm

(circles), A � 0:88, a � 3:1� 105 cmÿ1; l � 308 nm (diamonds),

A � 0:89, a � 105 cmÿ1, and l � 351 nm (squares), A � 0:9, a �
0:32� 105 cmÿ1. The dashed lines represent the calculated peak surface

temperature.
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The functions F and C in the above equations are defined by
the formulas

F � avTL

�
�2q� 1� 1

x
ÿ
�
1� x

al

�
ys ÿ 2

��
2� al�P

�ÿ1
;

C � w
l
�
�
al
�
qÿ ys�1ÿ x� � �1� al�P�

�
1ÿ qÿ 1

x

��

� �1� ysx��1�P�
���1� ysx��2� al�P��ÿ1 ; �2:23�

where

TL � L

c
; P � TaTL

�Ts � T1�2
vl

w
;

�2:24�
ys � Ts

TL
; x � aw

v
; q � Is

crvTs

are dimensionless parameters. To avoid misunderstanding,
we note that in Eqns (2.22) ± (2.24) and from then on Ts

denotes the increase in temperature, i.e. the surface tempera-
ture is now defined as Ts � T1.

The investigation of the system of equations (2.22) is a
conventional problem of the nonlinear theory of oscillations
[40]. This system of equations has a single singular point
�Ts � Ts0, l � ls� which corresponds to the so-called station-
ary evaporation wave [15, 16, 18], where F � C � 0. The
parameters of the stationary wave are conveniently written in
the implicit form

vs � v0 exp
�
ÿ Ta

Ts0 � T1

�
; Is � crvs�Ts0 � TL�; ls � w

vs
:

�2:25�

Notice that the temperatureTs0 and the heated layer thickness
ls are independent of the absorption coefficient a.

The temperature distribution in the stationary evapora-
tion wave is of the form

T�z� � Ts0 exp �ÿaz�

� alsTs0 � TL

1ÿ als

�
exp �ÿaz� ÿ exp

�
ÿ z

ls

��
: �2:26�

It is well known [16] that the temperature distribution (2.26)
has a peak located at a distance

zmax � ls
1ÿ als

ln
alsTs0 � TL

als�Ts0 � TL� �2:27�

beneath the surface. The peak temperature is given by the
formula

Tmax � �Ts0 � TL�
�

alsTs0 � TL

als�Ts0 � TL�
�als=�alsÿ1�

: �2:28�

Some of the parameters of the stationary evaporation
wave are shown in Fig. 4. One can see from the plots that the
lengths l and zmax decrease while the temperatures Ts0, Tmax

and the subsurface superheating DT � Tmax ÿ Ts0 grow with
increasing radiation intensity. The lengths l and zmax differ
greatly in scale (the point zmax is located near the evaporable
surface), and these lengths are therefore plotted on different
scales in Fig. 4c. It must be remembered that the surface
evaporation model is applicable only in the temperature
range T < Tc, where Tc is the critical temperature. As the
critical temperature is approached, the enthalpy of the phase
transition decreases and then vanishes at the critical point. To
investigate the laser ablation at temperatures close to the
critical one (and higher), advantage should be taken of gas
dynamics equations.

The moments method and the fortunate choice of the trial
function (2.18) lead to results which coincide with the exact
solution not only for short, but for long �t!1� times as
well. Therein presumably lies the cause of the good accuracy
of the method: 20 ± 30% [30, 32, 33].

2.4 Oscillations, jumps, and other qualitative effects
We now turn to the dynamics of temperature variation. The
stability investigation of the singular point (2.25) is performed
by conventional techniques [40]. Calculating the derivatives

FT � qF
qT

; Fl � qF
ql
; CT � qC

qT
; Cl � qC

ql
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Figure 3.Calculated results on the laser heating and ablation of an indium

target in the subthreshold mode (the FWHM of the laser pulse is 15 ns)

[30]. Shown are the laser pulse profile I�t�, the surface temperature Ts, the

heated layer thickness l, the location of the melting front hm, the ablation

rate v, and the ablation layer thickness h of the material. The dotted line

represents the temperature determined through the solution of the linear

heat conduction equation

Tan�t� � T1 � aA
rc

� t

0

I�tÿ t1� exp �a 2Dt1� erfc
�������������
a 2Dt1

p
dt1 :

The thermal parameters in the equation are constant and equal to the

corresponding values at room temperature T1. The temperature depen-

dences of the parameters c, K, a, and A employed in the calculations were

reported in Ref. [30].
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at a point �Ts � Ts0, l � ls�, it is easy to verify that

p � FTCl ÿ FlCT � av 3

w

�
1� Ta�Ts0 � TL�
�Ts0 � T1�2

�

�
�
2� x� TaTL

�Ts0 � T1�2
�ÿ1

> 0 ;
�2:29�

s � ÿFT ÿCl � v
2

w

�
1� x

�
3� Ta�Ts0 � 2TL�

�Ts0 � T1�2
��

�
�
2� x� TaTL

�Ts0 � T1�2
�ÿ1

> 0 :

As relations (2.29) indicate, the singular point (a node or a
focus) is stable, and the stationary evaporation wave is
therefore an attractor to which the solution is attracted from

any initial conditions. The bifurcation boundary which
separates the nodes and the foci is defined by the condition
s 2 � 4p. This boundary is shown in Fig. 5a in the �a; Is�-
parameter plane. In the case when the state is a focus, the
transient oscillations occur in the initial stage of the process.
The phase portrait and the oscillation dynamics of the
ablation rate and heated layer thickness for this system are
shown in Figs 5b ± d, respectively. These oscillations may be
of importance for several practical problems [12].

When pulsed laser ablation is under investigation, the
intensity of incident radiation depends on time [an example of
such a dependence is relation (2.21)]. In this case, Eqns (2.22)
should be solved simultaneously with Eqn (2.20) and the
intensity Is at the ablation front is given by formula (2.11).
The layer thickness of the material removed during a laser
pulse is defined by the integral

h � v0
�t4 tl

0

exp

�
ÿ Ta

T1 � Ts�t�
�
dt : �2:30�

The quantity (2.30) is an intermediate asymptotics. Should the
integration in expression (2.30) be extended to infinity, the
integral diverges. This is so because when t!1 the
temperature Ts ! 0, and the ablation rate v �
v0 exp �ÿTa=T1� > 0 is a finite, even if very small, quantity.
Intermediate asymptotics are widely used in the problems
facing the physics of combustion and chemical kinetics [41 ±
43].

Calculations carried out with the employment of the
above technique confirm the qualitative analysis of the h�F�
dependence performed in Section 2.3. It is easy to verify that
the dependence h�F� shows three characteristic ranges in the
case when the optical and thermal parameters are constant,
namely, the subthreshold (for F < Fth�, near-threshold
�F > Fth, F � Fth�, and screening �2:5Fth < F < 5Fth�
ranges. The asymptotic behavior of the h�F� curves in
these ranges is adequately described by formulas (2.4),
(2.5), and (2.7), and the general run of the dependence
follows the interpolation formula (2.6), which may be
considered typical for the thermal mechanism of laser
ablation.

The lowering of the threshold Fth on shortening the laser
pulse can also be considered as a characteristic feature of
thermal ablation (Fig. 6a). The ablation threshold may also
vary significantly with the form of the laser pulse [32]. The
peak surface temperature grows with shortening the laser
pulse, while the point in time at which this temperature is
attained and the heated layer thickness l at that very moment
decrease (Fig. 6b).

Some special cases when the integral kinetics of laser
ablation departs from the typical are noteworthy. These
departures may be caused by the temperature dependences
of the optical and thermal parameters of the material. We
shall highlight here the departures of two types: (i) the slope
of the h�F� dependence becomes more flatten, and (ii) the
h�F� dependence steepens (`jumps' appear). Responsible for
the special features of the first type is, for instance, the
lowering of the heating rate in the vicinity of the melting
point [32] and also the growth of the heat capacity with
temperature [33]. The jumps in ablation rate may arise, in
particular, due to the temperature dependence of the
absorptivity A�T �.

As an example we refer to Fig. 7a which shows the h�F�
curves obtained for a jump-like variation of absorptivity. The
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Figure 4. Parameters of the stationary evaporation wave calculated for

v0 � 106 cm sÿ1, Ta � 3� 104 K, T1 � 300 K, c � 1 J gÿ1 Kÿ1,
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(a) temperature distribution in the wave for Ts0 � 3000 K (the inset shows

an enlarged view of the temperature peak neighborhood); (b) surface

temperature Ts0, peak temperature Tmax, and the superheating

DT � Tmax ÿ Ts0 as the functions of intensity Is; (c) characteristic thermal

length l and location of the temperature peak zmax as the functions of

intensity Is.
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smoothed jump was modeled by the function

A�T � � A1 � �A2 ÿ A1�
�
1

2
� 1

p
arctan

Tÿ Tj

DT

�
: �2:31�

The absorptivity varied from a value A1 (for T < Tj) to a
value A2 (for T > Tj); the temperature interval in which the
transition occurred had a width DT.

An interesting feature of laser ablation in the case under
consideration is the occurrence of an `intermediate threshold'
on reaching which the laser ablation rate experiences a rapid
change. When the switching temperature Tj is relatively low,
the jumps in absorption have a minor effect on the shape of
h�F� curves. But as Tj increases, the changes in ablation rate
become almost jump-like (Fig. 7b). Jumps of this type are
frequently observed in experiments (see, for instance,
Ref. [10]), but have not yet received a satisfactory explana-
tion. In paper [13], attention was drawn to the fact that the
intermediate jumps can be attributed to ablation upon
cessation of the laser pulse, provided the ablation front
catches up with the temperature peak in the layer beneath
the surface. In real experiments, ablation is observed, as a
rule, in the transient regime, which smears, as shown in
Refs [30, 33], the jumps in the h�F� curves.

The moments method allows an easy analysis of the effect
of temperature variations in the absorption coefficient ag�Ts�
on the ablation kinetics. The temperature of the plume is
actually determined by its expansion dynamics and is
different from the temperature at the ablation front. Never-
theless, the ag�Ts� dependence can model the effect of
screening on the ablation kinetics for several special cases of
the plume expansion. The pattern of this influence is evident
enough. If the absorption coefficient ag�Ts� lowers with

temperature, the vapor at the laser pulse tail becomes more
transparent, resulting in self-adjustment of the heating.

The calculated results which serve to illustrate the heating
self-adjustment effect are presented in Figs 7b and 7c where
the ag�Ts� dependence was modeled by a jump function of the
same form as that given by expression (2.31). With reference
to these figures it is seen that the bleaching of vapor due to its
cooling does not result in qualitative changes in the form of
the h�F� curve, but it is amply manifested in the dynamics of
temperature variation at the ablation front. The heating self-
adjustment is responsible for the effect of `thermal memory',
when the surface temperature close to the switching tempera-
ture Tj is retained for a long time during the passage of a laser
pulse tail (Fig. 7c). If ag � const, the temperature decreases
monotonically over a length of the laser pulse tail (see, for
instance, Fig. 3b).

Among the qualitative features of laser ablation, which
are caused by the thermal dependences of optical and
thermal parameters of a material, mention should be made
of the possibility that a self-oscillation mode becomes
settled in the laser evaporation of transparent dielectric
materials [12, 14]. For these materials, the electron compo-
nent Ke of the thermal conduction coefficient and the static
electrical conduction s0 which determines the absorption
coefficient a�T � are the Arrhenius functions of the tempera-
ture [i.e. they are proportional to exp �ÿEg=T �]. In this case,
the solution corresponding to the stationary evaporation
wave proves to be unstable in some domain of parameter
values, and an oscillatory evaporation mode sets in. The
self-oscillations are caused by the mismatch between the two
characteristic velocities of the problem: the velocity of
motion of the ablation front and that of the thermal front
(the heated layer thickness).
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are the same as in Fig. 4. (b) Phase portrait of the system for a � 10 cmÿ1, Is � 107 W cmÿ2, and stationary wave parameters Ts0 � 3848 K, ls � 13:8 mm.
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3. Subpicosecond laser ablation.
Two-temperature model

When employing shorter (subpicosecond) laser pulses, in
ablation kinetics the features appear which can no longer be
described in the context of the conventional thermal model.
Meanwhile, the ablation of materials with the aid of
ultrashort (subpicosecond) laser pulses is applied in `high
technologies' for micromechanical processing [6, 10].
Research in this field is also of purely scientific interest,
because the mechanisms responsible for the material removal
by ultrashort laser pulses are still the subject of debate. The
ablation problem has several features relating to the energy
absorption, the electron ± phonon interaction, themechanism
of transferring material to the vapor ± gas state, and vapor
expansion 4. In the case of metal ablation, we can point out
the effects related to the electron ± phonon interaction and
those caused by the hot electron gas in the material.

A two-temperature model for the description of transition
phenomena in a nonequilibrium electron gas and a lattice
under subpicosecond laser irradiation was proposed more

than 30 years ago [16, 18, 46]. For a detailed comparison of
this model with experiment, different characteristics should
be measured with a subpicosecond temporal resolution,
which is by itself an intricate task [47 ± 51]. Some character-
istics are hard to measure directly at all. That is why the
analysis of physical mechanisms involved in the ablation
process by ultrashort laser pulses has to be performed on the
basis of a theoretical consideration of `indirect' experimental
data.

The electron ± phonon interaction dynamics was investi-
gated with the aid of a kinetic equation by Fal'kovski|̄ et
al. [52]. This research lends support to the validity of the basic
ideas underlying the two-temperature model, enables one to
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ag�T � � 10a
�
1

2
� 1

p
arctan

Tÿ Tj

DT

�
; a � 105 cmÿ1 ; DT � 10 K :

(c) Effect of thermal memory for a fluence F � 2:5 J cmÿ2 and different

switching temperatures; the FWHM of the laser pulse was 15 ns.

4 Different aspects of subpicosecond laser ablation are the concern of

Refs [185 ± 188].
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determine the electron ± phonon interaction constant, and
permits several kinetic coefficients to be expressed in terms
of microscopic metal characteristics. However, more detailed
models call formore complex numerical calculations, which is
associated with the use of high-performance computers and
modern numerical techniques.

The two-temperature model describes the energy transfer
inside a metal by application of the coupled heat conduction
equations for the temperatures of electrons Te and the lattice
(phonons) Ti:

ce
qTe

qt
� cev

qTe

qz
� q
qz

�
Ke

qTe

qz

�
�Qÿ m�Te ÿ Ti� ; �3:1�

ci
qTi

qt
� civ

qTi

qz
� q
qz

�
Ki

qTi

qz

�
� m�Te ÿ Ti� : �3:2�

Here, ce and ci are the specific heat capacities [J cm
ÿ3 Kÿ1] of

the electrons and the lattice, respectively, Ke and Ki are the
corresponding thermal conductivity coefficients, and the
parameter m � ce=t characterizes the rate of energy exchange
[W cmÿ3 Kÿ1] between the electron and lattice subsystems
(t is the characteristic exchange time for the electron
subsystem).

The absorption of the laser energy by electrons is
described employing the source [see Eqn (2.10)]

Q � ÿ qI
qz
� aI ; I�0; t� � Is�t� ; �3:3�

where a is the absorption coefficient, and Is is the radiation
intensity at the metal surface �z � 0�. The quantity
Is�t� � AI�t� in expression (3.3) depends on the laser pulse
shape I�t�, for instance, of the form (2.21), and the
absorptivity A � 1ÿ R of the material (R is the radiation
reflection coefficient). In the case of an ultrashort laser pulse,
the plume is produced upon cessation of the pulse and has no
effect on the ablation process.

The heat conduction equations (3.1) and (3.2) are written
in the ablation-front frame of reference; the ablation front
travels with a velocity v � v�t� relative to the immobile
material. This formulation is slightly different from the
conventional two-temperature model [44, 53], from which
several small parameters were omitted. However, we will take
advantage of this form, because it is convenient for the
analysis of a stationary evaporation wave.

The boundary conditions specify the energy fluxes at the
surface z � 0:

ÿ Ke
qTe

qz

����
z� 0

� Je ; �3:4�

Je � ÿk0b0�Te; s � T1�2

� exp

�
ÿ Tu

Te; s � T1

�
�the Richardson law�; �3:5�

where b0 is the Richardson constant, and Tu is the work
function. The factor k0 � kB�Te; s � T1�=e in expression (3.5)
is used to convert the energy flux density Je into energy units
[W cmÿ2].

Similarly, the thermal flux related to energy losses due to
material removal (ablation) is given by a formula similar to
expression (2.12):

ÿKi qTi

qz

����
z� 0

� Ji � ÿrvL : �3:6�

The two other boundary conditions (for z � 1) and the
initial conditions (for t � 0) are evident:

Te

���
z�1
� Ti

���
z�1

� Te

���
t� 0
� Ti

���
t� 0
� 0 : �3:7�

As in Section 2, the subscript `s' is used for denoting the
temperature at the surface z � 0, i.e. Te

��
z� 0
� Te; s and

Ti

��
z� 0
� Ti; s. The quantity Te; s enters the Richardson law,

and the quantity Ti; s determines the laser ablation rate which
is written down like formula (2.1):

v � v0 exp
�
ÿ Ta

Ti; s � T1

�
: �3:8�

For the model to be suitable for the analysis of experi-
mental data, account must be taken of the temperature
dependences of the coefficients ce, ci, Ke, Ki, A, a, and m. For
instance, the electron heat capacity is linear with respect to the
electron temperature: ce � bTe. The lattice heat capacity ci is
practically constant for temperatures higher than the Debye
temperature TD. However, if calculations are performed with
the inclusion of melting process and other structural phase
transitions, the effective lattice heat capacity ci depends on the
lattice temperature Ti. The electron heat conductivity Ke
depends on the temperatures Te and Ti [51, 53]. The
reflection coefficient R and the absorption coefficient a also
depend on the temperatures Te and Ti in the general case. In
semiconductors, the reflection coefficient R varies linearly
with the electron temperature Te [51].

Themajority of the above-given temperature dependences
may be taken into account in the calculations in the same
manner as for the one-temperature thermal model employing
the moments method [30]. To illustrate the main features of
the two-temperature model, we consider a simplified problem
in which all the coefficients are assumed constant.

One more circumstance is worthy of mention. The two-
temperature model (3.1) and (3.2) applies when advantage
can be taken of the classical Fourier laws to describe the
electron and phonon thermal energy transfer. This implies
that the model is appropriate for times much longer than the
characteristic settling time te for equilibrium distribution in
the electron gas. The time te depends on the electron
temperature (on the energy density in a laser pulse); in typical
cases it amounts to several hundred femtoseconds [51].

The assumption of diffusive electron energy transfer (3.1)
implies in its turn that the characteristic variations in electron
temperature distribution occur on spatial scales greater than
the electron mean free path le. Over shorter lengths, the
electron transport is primarily ballistic. For various metals,
the quantity le � vFte (where vF is the Fermi electron velocity)
differs by more than an order of magnitude. For nickel, for
instance, the electron mean free path le is several tens of
nanometers, whereas for gold it is equal to hundreds of
nanometers [54, 55].

When the relaxation time t! 0 �m!1�, the two-
temperature model goes over into the thermal model with a
single temperature T � Ti � Te of the solid; in this case, the
quantities c � ce � ci and K � Ke � Ki are the total heat
capacity and the thermal conductivity coefficient of the solid.

For a constant radiation intensity �Is � const�, the
solution of the problem (3.1) ± (3.8) asymptotically
approaches the solution which describes the stationary
evaporation wave. This solution is an attractor and is
important for understanding the general features of the

March, 2002 Selected problems of laser ablation theory 303



problem. It is rather simple in form:

Te � Te1 exp �ÿp1z�

ÿ aTe; s � �p1 ÿ a�Te1 ÿ Je=Ke
p2 ÿ a

exp �ÿp2z�

� p2Te; s ÿ �p2 ÿ p1�Te1 ÿ Je=Ke
p2 ÿ a

exp �ÿaz� ; �3:9�

Ti � Ti1 exp �ÿp1z�

ÿ aTi; s � �p1 ÿ a�Ti1 ÿ Ji=Ki
p2 ÿ a

exp �ÿp2z�

� p2Ti; s ÿ �p2 ÿ p1�Ti1 ÿ Ji=Ki
p2 ÿ a

exp �ÿaz� ; �3:10�

where Te; s � Te

��
z� 0

and Ti; s � Ti

��
z� 0

are the corresponding
temperatures at the surface, and Te1 and Ti1 are determined
from the boundary conditions.

The characteristic exponents p1 � 1=l1 and p2 � 1=l2 are
the roots of the dispersion equation [56]

P�p� � a3 p
3 ÿ a2 p

2 � a1 p� a0 � 0 ; p � 1

l
; �3:11�

a3 � KeKi ; a2 � �ciKe � ceKi�v ;
a1 � ceciv

2 ÿ m�Ke � Ki� ; a0 � �ce � ci�v m

( p1 and p2 correspond to the roots with a positive real part).
The greater root p1 � 1=l1 of the dispersion equation

(3.11) is real and positive. It is given by the Cardano formula

p1 � 1

3a3

"
a2 �

�
g�

������������������
g 2 � 4b3

p
2

�1=3

ÿ b

�
2

g�
������������������
g 2 � 4b3

p �1=3
#
; �3:12�

g � 2a 3
2 ÿ 9a1a2a3 ÿ 27a0a

2
3 ; b � 3a1a3 ÿ a 2

2 :

The two other roots of the dispersion equation (3.11) contain
the factors 1� i

���
3
p

. The positive root p2 � 1=l2 is defined as

p2 � 1

3a3

"
a2 ÿ 1� ���

3
p

i

2

�
g�

������������������
g 2 � 4b3

p
2

�1=3

� 1ÿ ���
3
p

i

2
b

�
2

g�
������������������
g 2 � 4b3

p �1=3
#
: �3:13�

For t! 0 �m!1�, the root l1 ! 0 and the magnitude of l2
tends to the characteristic thermal length appeared in the
surface evaporation model:

l1

���
m!1

� 1���
m
p

���������������
Ke � Ki
KeKi

r
! 0 ; l2

���
m!1

� w
v
; �3:14�

where w � �Ke � Ki�=�ce � ci� is the thermal diffusivity of the
solid. It is valid to say that l2 is the characteristic length of a
thermal wave in the lattice, and l1 is the characteristic length
related to the electron temperature distribution.

In paper [53], the dispersion equation equivalent to
Eqn (3.11) was given in a somewhat different form (several
small terms were omitted from it). For subsequent calcula-
tions we shall employ the parameter values typical of metals,
for instance, of Al [57].

The terms proportional to exp �ÿz=l1� in the quantities
(3.9) and (3.10) do not affect the temperatures themselves,
because the Te1 and Ti1 amplitudes are small in comparison
with Te; s and Ti; s. The corresponding terms are nevertheless
responsible for the temperature gradients near the surface. An
accurate investigation of the temperature distribution on
spatial scales z < l1 5 aÿ1 (typically, z � 10ÿ30 nm) calls
for the inclusion of the ballistic electron transport; in the
subsequent discussion we will therefore neglect the effects
related to `fast exponents' in the temperature distributions.

For ultrashort laser pulses, the electron and lattice
characteristic heating times differ greatly, whereas the
ablation process usually commences after the laser pulse.

Calculations in the framework of a simplified two-
temperature model [47, 48, 53, 58], from which the convec-
tive terms vHTe; i were omitted, do not allow one to calculate
the layer thickness of the material removed by laser pulse
irradiation. To do this requires one to take advantage of the
complete model (3.1), (3.2) and, what is more, to extend the
calculations to times long enough (to times of the order of 103

laser pulse lengths). The late stage of the process was
investigated in Ref. [56] employing the moments method.

The trial functions for the temperatures Te�z; t� and
Ti�z; t� were selected in the following form

Te � 1

1ÿ ale

��
Te; s ÿ le

Ke
Je

�
exp �ÿaz�

ÿ
�
Te; sale ÿ le

Ke
Je

�
exp

�
ÿ z

le

��
; �3:15�

Ti � 1

1ÿ ali

��
Ti; s ÿ li

Ki
Ji

�
exp �ÿaz�

ÿ
�
Ti; sali ÿ li

Ki
Ji

�
exp

�
ÿ z

li

��
: �3:16�

This form of the functions automatically satisfies the
boundary conditions for z � 0 and z � 1. The trial solu-
tions contain four unknown functions: the characteristic
surface temperatures Te; s�t�, Ti; s�t� and the characteristic
scales of lengths le�t�, li�t�. A more detailed description may
include additional `fast' exponents and the corresponding
preexponential factors.

In accordance with the idea of the method we introduce
four moments for electron and lattice temperatures:

M0 �
�1
0

Te dz ; M1 �
�1
0

Tez dz ;
�3:17�

N0 �
�1
0

Ti dz ; N1 �
�1
0

Tiz dz :

The differential equations for the moments (3.17) are easy to
obtain by integrating the input equations (3.1) and (3.2):

ce
dM0

dt
� ÿcevTe; s � Je � Is ÿ m�M0 ÿN0� ;

ce
dM1

dt
� ÿcevM0 � KeTe; s � Is

a
ÿ m�M1 ÿN1� ;

�3:18�
ci

dN0

dt
� ÿcivTi; s � Ji � m�M0 ÿN0� ;

ci
dN1

dt
� ÿcivN0 � KiTi; s � m�M1 ÿN1� :
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The subsequent calculation involves substitution of the
trial functions (3.15) and (3.16) into expressions (3.17) and
equations (3.18). As a result we arrive at a system of four
ordinary differential equations for Te; s�t�, Ti; s�t� and le�t�,
li�t�. These equations are rather cumbersome (we do not write
them down here), but the resultant system of equations is
integrated rather fast. Suffice it to say that all the calculations
presented below were performed employing a 300-MHz
Pentium II PC in several minutes.

Figure 8 shows the dynamics of metal heating by a laser
pulse with a duration tp � 1 ps and a pulse energy density
F � 0:15 J cmÿ2 [the pulse form was modeled by Eqn (2.21)].
Referring to Fig. 8a, it is seen that the electron temperatureTe

`detaches' from the lattice temperature Ti during the laser
pulse and peaks at the point in time t � 1:8 ps. The
characteristic lattice heating time is sufficiently longer (this
follows from the relation ci=m4 ce=m � t); the phonon
temperature peaks at t � 27:2 ps. In this case, the character-
istic scales of lengths le and li (Fig. 8b) increase with time
approximately according to the thermal conduction law, i.e.
proportionally to

��
t
p

. For long times, the distinction between
le and li becomes insignificant, but even for times t � 100 ps
the difference in their scales is still appreciable: le > li (since
Ke > Ki).

The results presented in Fig. 8 show that the method
involved adequately depicts the qualitative features of the
problem revealed, for instance, in Ref. [53]. However, there is
also a significant advantage: the moments method allows a
fast computation of the late stage of the process, which is
significant for the description of ablation. One can see from
Fig. 9a that the ablation is completed in a time of the order of
1 ns (this is approximately 103 times longer than the laser
pulse). In the traditional experiments, the layer thickness of
the material ablated in one laser pulse is measured as a

function of the energy density in the pulse. It is precisely this
dependence that is hard to calculate using conventional
numerical techniques.

The typical effect of dependence of ablation kinetics on
the laser pulse duration is illustrated in Fig. 9b. For a long
(nanosecond) laser pulse, the ablation is insensitive to the
lattice ± electrons energy exchange rate. With t4 1 ps, the
curves coincide with the results following from the purely
thermal ablation model with a single temperature of the
lattice and electrons. For short (picosecond) laser pulses, the
corresponding curves are sensitive to the characteristic
relaxation time t. When t! 0 (the case of a purely thermal
model), the curves show too fast a growth of the ablation
layer thickness in comparison with experimental dependences
(see the discussion of this issue in Ref. [32]).

Another well-known effect is also evident from Fig. 9b:
the lowering of the ablation threshold with shortening laser
pulse [10]. Therefore, the moments method adequately
depicts all qualitative aspects of the problem. The calcula-
tions are fast to perform in the context of this method,
allowing its use for the analysis of experimental data.

4. Hydrodynamic model

4.1 Ablation at high irradiation intensities
As previously noted, the simple evaporation model outlined
above is valid for temperatures substantially lower than the
critical one, when there exists a sharp (of the order of
interatomic distance) vapor ± condensed phase boundary
and the vapor density is many times lower than the
condensed material density. As the temperature increases,
the sharp interphase boundary fuzzifies into a macroscopic
transition layer whose structure and dynamics can be

Te; s

Ti; s

t, ps

T
e;
s,
T
i;
s,
1
0
3
K

15

10

5

0 5 10 15

15
T
e;
s,
T
i;
s,
1
0
3
K

Te; s

Ti; s

10

5

0 20 40 60 80 100
t, ps

a

l e
,l

i,
mm

le

li

0.2

0.1

t, ps
0 20 40 60 80 100

b

Figure 8. Dynamics of metal heating by a laser pulse with a length tp � 1 ps and a pulse energy density F � 0:15 J cmÿ2. (a) Electron and lattice

temperaturesTe; s andTi; s (the inset shows an enlarged view of the initial stage of the process). (b) Characteristic spatial scales le�t� and li�t� of electron and
lattice temperature distributions. Parameters of the calculations: ce � 0:04035 J cmÿ3 Kÿ1, ci � 2:43 J cmÿ3 Kÿ1, Ke � 2:37 W cmÿ1 Kÿ1,
Ki � 1 W cmÿ1 Kÿ1, relaxation time t � 1 ps �m � ce=t�, density r � 2:688 g cmÿ3, latent heat of evaporation L � 10 860 J gÿ1, the factor in formula

(3.8) is v0 � 414 000 cm sÿ1, activation energy Ta � 35 240 K, the work function in expression (3.5) Tu � 49 300 K, the Richardson constant

b0 � 120:4 A cmÿ2 Kÿ2, initial temperature T1 � 300 K, absorption coefficient a � 1:516� 105 cmÿ1, and absorptivity A � 1.

March, 2002 Selected problems of laser ablation theory 305



described by the complete system of hydrodynamic equa-
tions. This system should be complemented with the equation
of state and the data on heat capacity, heat conduction, and
electrical conduction of the material in a wide domain of the
phase diagram, including the critical point and the two-phase
domain.

As of now, a consistent theory of these properties has not
been elaborated. In papers [59, 60], the use of experimental
data was proposed to obtain the requisite information.
Rather complete direct measurements of the equation of
state and the conductivity in the circumcritical domain in
static experimental conditions were performed for mercury
and alkali metals, which have low critical temperatures [61 ±
67]. For the majority of metals we are led to resort to indirect
information, which has been successfully extracted from the
experiments on dynamic compression in strong shock waves
[68 ± 71]. To perform gas dynamics calculations, convention-
ally advantage is taken of semiempirical equations of state,
similar to those proposed in Refs [71 ± 74] and constructed on
the basis of experimental data.

A one-dimensional hydrodynamic model for the
`through' numerical computation of laser ablation was
constructed in Ref. [75]. Experimental data on the equation
of state and the conductivity were employed for the
description of material properties in the circumcritical
domain. In the range of high temperatures and low
densities, recourse was made to the equation of state of an
ideal plasma with an equilibrium ionization calculated
applying an approximate method [76]. For above-normal
densities �r5r0� corresponding to the solid metallic state,
the pressure was prescribed by a binomial interpolation
equation of state [76].

The most complete experimental data on the equation of
state in the circumcritical domain are available for mercury
[61], and therefore elaborate ablation calculations were

performed for this metal. For other materials, the authors of
Ref. [75] invoked the law of corresponding states [77].
According to this law, the parameters which characterize a
specific material fall out of any equation of state, containing
two of these parameters, on going over to reduced (divided by
the corresponding critical values) variables. As noted in
Ref. [78], this law holds good for metals; its accuracy rises
when themetals refer to the same group of the Periodic Table.

Performing a `through' computation necessitates pre-
scribing the thermal conductivity and absorption coeffi-
cients. The main contribution to the heat conduction in a
dense plasma is made by the electron component. The
corresponding thermal conductivity coefficient Ke is related
to the static conductivity s�0� by the Wiedemann ±Franz law

Ke � p2

3

�
k

e

�2

T s�0� ; �4:1�

and it was calculated from the experimentally determined
[61 ± 67] static conductivity.

The absorption coefficient for monochromatic radiation
is related to the high-frequency conductivity s�o� by the
expression

ao � 4p s�o�
c
�
1ÿ 4p s�o�=n�1=2 ; �4:2�

where n is the effective collision frequency, and o is the laser
radiation frequency. Therefore, to determine the absorption
coefficient ao we must know the high-frequency conductivity
s�o�, for which experimental data are scarce.

In work [75], the high-frequency conductivity s�o� was
calculated from the experimentally determined static con-
ductivity s�0�. The s�o� and s�0� conductivities were
assumed to be related by the same expression as in the case
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Figure 9. (a) Removedmaterial thickness as a function of time. Pulse duration tp � 1 ps, pulse energy densityF � 500mJ cmÿ2. (b) Layer thickness of the
material removed in one pulse as a function of pulse energy density for one long and two short laser pulses. The parameters of the calculation are indicated

in the plots; the remaining parameters are the same as in Fig. 8.
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of a rarefied plasma:

s�o� � n 2

n 2 � o 2
s�0� : �4:3�

The static conductivity measurement data were approxi-
mated by the formula [63, 79]

s�0� � e 2ne
mn

exp

�
ÿU�r�

T

�
: �4:4�

Here, ne is a quantity of the order of the electron density in a
metal at normal conditions, and U�r� has the meaning of the
energy gap width in the electronic spectrum. Like in normal
metals, the effective collision frequency was assumed to be
density- and temperature-dependent: n � vFlÿ1�Tn 1=3.

The problem of the one-dimensional expansion of a dense
metallic plasma under neodymium-laser pulse irradiation
with an intensity of 1 ± 10 GW cmÿ2 and a duration of 10 ±
100 ns was solved numerically in Ref. [75]. Under these
conditions, the degree of metal compression behind the
shock front is approximately 1.1 ± 1.2. The shock-com-
pressed layer width increases with time, because the shock
wave is ahead of the thermal wave which acts as a piston. The
light is absorbed primarily in a narrow layer near the surface,
where Re e�o� � 0. Calculations suggest that the dielectric
constant and the hydrodynamic parameters exhibit very
strong gradients in this layer. The pressure is constant in
front of the absorbing layer. The structure of the latter
becomes stationary (in the co-moving frame of reference)
from the moment the shock wave detaches from the thermal
one.

Interestingly, for a radiation intensity of the order of
5q0 � 5rc�RTc�3=2 (whereR is the molar gas constant, and the
subscript `c' indicates the values of the quantities at the
critical point), to which there corresponds a temperature in
the absorbing layer slightly higher than the critical tempera-
ture, a thin layer of condensed dielectric borders on the
metallic phase. The dielectric layer thickness is of the order
of 10ÿ3 cm at this intensity. With increasing the latter, the
dielectric layer thickness lowers and for q � 50q0 it vanishes
completely. The disappearance of the dielectric layer is due to
the high temperature of the adjacent plasma layer. The same
properties are revealed by calculations performed with other
radiation frequencies and laser pulse lengths.

With increasing intensity and pulse length, the optical
thickness of the absorbing layer increases and amounts to as
much as several units. This corresponds to a low (several
percent) target reflectivity. Calculations suggest that the
absorption region structure and the target surface screening
are settled very fast, which justifies the quasi-stationary
approach to the problem of high-temperature laser ablation.

4.2 Ablation under the action of ultrashort laser pulses
Let us consider in greater detail the ablation of a metal
exposed to a laser pulse in the femtosecond range. This
problem has acquired special importance in the last few
years in connection with the extensive application of
femtosecond laser pulses in technology and medicine (see,
for instance, Refs [4 ± 7, 10, 80, 81]).

In metals, laser radiation is absorbed primarily by
conduction electrons. The radiation energy absorbed in the
skin layer propagates deep into the inward regions of the
sample by way of electron heat conductivity. Simultaneously
there occurs an energy transfer from electrons to the crystal
lattice. This process goes slowly on account of the large

difference between the electron and ion masses or, which is
the same [82], on account of the large difference between the
Fermi electron velocity and the sound velocity. Since the
electrons in a metal are degenerate and their heat capacity is
low, the electron temperature during laser pulse irradiation
may far exceed the equilibrium metal temperature. The
overheating of electrons relative to the lattice leads to several
interesting features in electron emission [83 ± 85] and thermal
emission [86 ± 88] of metals absorbing ultrashort laser pulses.

During the course of an ultrashort laser pulse, the heating
of the crystal lattice is relatively small. The motion of the
material can be neglected at this stage. As noted in Ref. [85],
thematerial motion begins to play a part in a time of the order
of the characteristic electron ± ion energy exchange time,
when the rarefaction wave catches up with the electron
thermal wave. Indeed, the electron thermal wave in the
metal travels inwards according to the law XT � ������

wet
p �

ve
������
tet
p

, where we � v 2e te is the electron thermal diffusivity,
and te is the electron mean free time.

The hydrodynamic perturbation, which propagates
according to the law Xh � ct, catches up with the thermal
wave at the point in time t � � teM=m � te; i, whereM and m
are the respective masses of ions and electrons, and te; i is the
electron ± ion energy exchange time. In metals having a
normal density this time is 1 ± 10 ps. As a result, by the time
of onset of the hydrodynamic motion the target surface layer
with a thickness l0 � max �d; ���������wte; i

p � is found to be heated to
a temperature T0 � Q=l0cv, where d is the skin layer depth,
w is the electron thermal diffusivity, Q is the energy absorbed
per unit surface area, and cv is the heat capacity of a unit
volume. In typical experiments involving high-power sub-
picosecond pulses (see, for instance, Refs [90 ± 92]), the heated
layer thickness is of the order of 100 nm, and the temperature
is of the order of several thousand degrees.

Therefore, in the conditions of instantaneous heating, in
lieu of the conventional problem of ablation front propaga-
tion, we need to solve the simpler problem of the adiabatic
expansion of a preheated material layer. We note that the
detachment of the electron temperature from the lattice
temperature, which is significant during the heating stage, is
of no importance at the expansion stage. The motion of
material can therefore be described by the one-temperature
system of gas dynamics equations. As will be seen from the
subsequent discussion, the solution to this system of equa-
tions depends essentially on the equation of state of the
material and the initial entropy of the hot layer. When the
entropy is such that the adiabat of the expanding material
falls into the two-phase domain in the phase diagram, the flow
becomes qualitatively different from the conventional rar-
efaction wave in an ideal gas. In particular, in the expanding
material a liquid layer forms with very sharp boundaries.

The simplest expansion model of an instantaneously
heated surface layer was considered in Refs [93 ± 95]. It was
assumed that a uniform layer with a thickness l0, heated to a
temperature T0, was deposited on an incompressible solid
substrate. The initial material density was equal to the normal
solid density r0 and the initial pressure was defined by the
equation of state. The heated layer expanded in vacuum. In
this case it was supposed that the local thermodynamic
equilibrium in the material was not disturbed during expan-
sion (some remarks on the possible effect of departure from
equilibrium will be made below). Wide-range equations of
state in tabular form [71, 72] were employed for the numerical
calculations in Refs [93 ± 95].
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Figure 10 depicts the phase diagram of aluminium in the
variables � p; r�. The variation of the material state during
expansion follows the adiabat passing through the initial
point � pa; ra�. Our interest is in the case when the expansion
adiabat intersects the binodal at some point � pe; re� in the
� p; r�-plane and enters the two-phase domain. The most
important feature of this case is the jumpwise decrease of the
velocity of sound at the point where the adiabat intersects the
binodal. By calculating the derivative g�r� � �d ln p=d lnr�S
with the aid of the tabulated equation of state, it is easy to see
that g� r�4 1 in the neighborhood of the � pe; re� point in the
one-phase domain, whereas in the two-phase domain
g� r�5 1. The drastic change in the velocity of sound results
in a radical structural rearrangement of the flow.

Let us consider the initial stage of the expansion: t < l0=c0,
where c0 is the velocity of sound in the material with a density
r0 and a temperature T0. The existence of a substrate in no
way affects the flow structure at this stage, and the expansion
is described by a centered rarefaction wave [96, 76]. The
flow is self-similar and depends on the variable x � z=t. The
time t is counted from the beginning of expansion, and the
z-coordinate from the outer edge of the heated layer. The
z-axis points toward the vacuum space.With this choice of the
z-axis direction, nontrivial solutions of the gas dynamics
equations exist if the relation x � uÿ c is fulfilled [96, 76],
where u is the flow velocity, and c is the velocity of sound. This
solution can be represented by the equation

u�x� � ÿI�x� �
�r0
r

c�r�
r

dr : �4:5�

Here c�r� denotes the velocity of sound in the adiabat
p � p�r�.

Equation (4.5) implicitly governs the self-similar profiles
of thermodynamic variables and velocity in the centered
rarefaction wave. Figure 11 shows the density profiles in the
rarefaction wave for different initial temperatures. A char-
acteristic feature of the profiles presented is the existence of a
plateau which terminates with an abrupt density jump on the
vacuum side. This feature is easy to understand by consider-
ing the following simplified model in lieu of the real isentrope
[94, 95].

Let us assume that the isentrope can be approximated by
the power formula p � Crg1 with an index g1 4 1 in the
condensed phase [to the left of the � pe; re� point], and in the

two-phase domain by a similar formula with an index g2 5 1.
When the isentrope is given by a power function, the gas
dynamics equations take on a simple form

Nct � cuz �Nczu � 0 ; ut � uuz �Nccz � 0 ; �4:6�
whereN � 2=�gÿ 1�, and the subscripts t and z denote partial
derivatives with respect to the corresponding variables. In the
self-similar case, the system of equations (4.6) is written as

cu 0 �N�uÿ x�c 0 � 0 ; �uÿ x�u 0 �Ncc 0 � 0 �4:7�

(the prime denotes the derivatives with respect to the self-
similar variable x).

The nontrivial solutions of Eqns (4.7) are obtained when
the determinant of the system is zero. This condition assumes
the form

�uÿ x�2 � c 2 or x � u� c :

As noted above, in our case x � uÿ c. We substitute this
relation in the system of equations (4.7) to obtain the general
solution [96, 76]

u � Nx
N� 1

� A ; c � ÿ x
N� 1

� A �4:8�

in which A is an arbitrary constant determined from the
boundary conditions.

We consider portion 1 of the isentrope, corresponding to
the condensed phase, in which g � g1. This portion corre-
sponds to a centered rarefaction wave which propagates
through the unperturbed homogeneous material. From this
condition we determine the constant A to obtain

u1�x� � N1�x� c0�
N1 � 1

; c1�x� � N1c0 ÿ x
N1 � 1

: �4:9�

Portion 1 of the centered rarefaction wave is located in the
segment ÿc0 < x < x1e and borders on the unperturbed
heated material along the characteristic x � ÿc0. Another
boundary of portion 1 is located at the point x1e, to which
there corresponds the � pe; re� point in the � p; r�-plane. At
this point, portion 1 is matched with portion 2, which
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corresponds to the two-phase medium with an adiabatic
index g2. In going through the � pe; re� point from the one-
phase domain to the two-phase one, the velocity of sound
undergoes a stepwise drop from a value c1e to a value c2e.

As noted in the foregoing, the equality x � uÿ c is
fulfilled in the rarefaction wave under consideration, and
therefore one finds

x1e � u1e ÿ c1e ; x2e � u2e ÿ c2e : �4:10�
Since the flow velocity is continuous at the matching point
�u1e � u2e � ue�, from equalities (4.10) it follows that
x2e > x1e, i.e. portions 1 and 2 of the centered rarefaction
wave cannot be matched directly. A domain of uniform flow
should reside in between.

Therefore, the � pe; re� point in the � p; r�-plane corre-
sponds to a finite segment Ð the plateau region Ð in the
�x; r�-plane. One can see from expressions (4.10) that the
plateau width is given by

x2e ÿ x1e � c1e ÿ c2e � c1e :

From the matching conditions we determine the constant A
appearing in expressions (4.8) for portion 2 of the rarefaction
wave and put c2e � 0 and N2 � ÿ2 to obtain

u2�x� � 2xÿN1�c0 ÿ c1e� ; c2�x� � xÿN1�c0 ÿ c1e� :
�4:11�

From relations (4.11) and the isentrope equation follows
the expression for r:

r2�x� � re

�
1� xÿ x2e

c2e

�ÿ2
; �4:12�

where re is the material density in the plateau region. Owing
to the smallness of the velocity of sound in the two-phase
domain c2e, thematerial density in portion 2 decreases rapidly
for x > x2e.

So far we have been dealing with the expansion of a semi-
infinite uniformly heated layer. When the layer has a finite
thickness l0 and is deposited on an incompressible substrate,
the rarefaction wave reaches the substrate at the point in time
tr � l0=c0 and is reflected. The reflected wave with a current
coordinate zr�t� reaches the plateau region at the point in time
tf which can be determined by integrating the equation for the
reflected characteristic dzr=dt � u� c. In the case of the
isentrope power series approximation, a simple calculation
yields

tf
tr
�
�
Nc0 � l0=tr
Nc0 ÿ x1e

��N�1�=2
:

For t > tf, the material density behind the reflected wave
falls off with time, whereas in the plateau it remains constant
and equal to re. By the point in time t � tf the phase transition
is completed in the material behind the reflected wave and the
material resides in the two-phase state. In this case, the
pressure gradient weakens sharply and the motion `freezes
up': the inertial expansion mode sets in. At the moment of
`freezing-up', themotion of the boundary between the plateau
and the two-phase domain comes to a halt in the Lagrangian
coordinate, i.e. the accumulation of material by the plateau
domain terminates. The material density in the two-phase
domain falls monotonically to become lower than the density
in the plateau domain.

Therefore, the subsequent flow structure becomes asymp-
totically settled. The plateau domain turns into a thin shell
with a density re, moving with a constant velocity. The shell is
followed by the two-phase domain in which the velocity
depends linearly on the z-coordinate (a flow with a uniform
deformation) and the material density falls off with time.

The pattern outlined above is illustrated by the direct
numerical solution of the one-dimensional system of gas
dynamics equations. The material density and flow velocity
profiles resulting from the calculations are given in Figs 12
and 13. The computation was performed for an aluminium
layer with an initial thickness of 100 nm and an initial
temperature of 4000 K, deposited on a cold undistorted
substrate. The equation of state of aluminium was calculated
using the technique described in Ref. [71]. The liquid shell
density was equal to about 2 g cmÿ3 and remained invariable
for several nanoseconds. The shell thickness was also
constant and equal to about 70 nm. The two-phase domain
was a vapor with liquid droplets.

The calculation performed is a crude expansion model of
aluminium film heated by an ultrashort laser pulse, which was
experimentally studied in Refs [90 ± 92]. An instructive result
of these works was the observation ofNewton rings, when the
expanding film was illuminated with a probing laser beam.
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Figure 12.Material density profile.
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Two reflecting surfaces are required for the emergence of the
Newton rings in the expanding plume. Proceeding from the
above expansion pattern, it may be assumed that one of these
surfaces may be the external boundary of the liquid shell, and
the other the cold internal target layer. In this case it should be
tolerated that the probing radiation is only weakly absorbed
by the shell. This admission seems to be plausible because of
the smallness of the shell thickness and the decrease of the
electron density in the melt metal during expansion [93].

5. Photophysical ablation

The above mechanisms of laser ablation may be classified as
the mechanisms of surface and volume material removal.
These mechanisms may be complicated by one or another of
the physicochemical processes in the bulk or at the surface of
a solid. In this connection it would be of interest to investigate
the mechanism of so-called photophysical laser ablation [29,
97 ± 101] caused by the electronic excitation of the material.

The idea which underlies the photophysical ablation
mechanism is related to the modification of activation energy
for the removal of an electronically excited particle. Although
the phenomena of this kind have been much studied in the
dissociation of complex organic molecules (see, for instance,
Ref. [102]), they are hard to realize in the ablation of solid
materials because of the fast relaxation of the electronic
excitation.

A rather simple model of photophysical ablation follows
from a consideration of a four-level model [99]. It is assumed
that on absorption of a photon with an energy �ho the system
experiences a transition from the ground state N0 to the
excited state N1 from which it rapidly (the corresponding
relaxation time t1 ! 0) experiences a transition to the state
N � corresponding to a `long-lived' singlet or triplet state. This
transition scheme allows elimination of the effects of
stimulated emission, which are not observed in the ablation
of numerouswide-gapmaterials and organic compounds. It is
also assumed that the system in the N � state can absorb a
second photon �ho [the absorption cross sections
s01�N0 ! N1� and s12�N � ! N2� are different]. The relaxa-
tion time t2�N2 ! N �� is regarded as being short in compar-
ison with the thermal relaxation time tT. The parameter
s � s12=s01 describes the effects of induced absorption (or
bleaching). Schemes of this kind are used, for instance, in the
analysis of excitation ± relaxation processes in complex
organic materials [103].

The system of equations governing ablation now com-
prises three equations Ð those for the excited-particle
number density N �, the radiation intensity I, and the
temperature T, viz.

qN �

qt
� v qN �

qz
� �NÿN �� Is01

�ho
ÿN �

tT
; �5:1�

qI
qz
� ÿIs01

�
N� �sÿ 1�N �� ; �5:2�

qT
qt
� v qT

qz
� w

q2T
qz 2
�
�
Is01s� �ho

tT

�
N �

cr
: �5:3�

The velocity v � v�t� of ablation front propagation, which
enters Eqns (5.1) ± (5.3), is defined as

v �
�
1ÿN �s

N

�
v0 exp

�
ÿ E

Ts

�
�N �s

N
v �0 exp

�
ÿE �

Ts

�
; �5:4�

where E and E � are the activation energies required for the
removal of unexcited and excited particles from the material,
N is the number density of absorbing particles, and the
subscript `s' is employed as previously to denote the
quantities at the ablation front �z � 0�.

The boundary conditions assume the form

K
qT
qz

����
z� 0

� H

�
1ÿN �s

N

�
v0 exp

�
ÿ E

Ts

�

�H �
N �s
N

v �0 exp
�
ÿE �

Ts

�
; �5:5�

I
���
z� 0
� I�t� exp

�
ÿag

�t
0

v�t1� dt1
�
; �5:6�

N �
���
z�1

� 0 : �5:7�

Boundary condition (5.6) takes into account the screening of
radiation by the vapor of the ablated material.

It is easy to recognize that the main effect of photo-
physical ablation sets in when E �5E, when the second term
in expression (5.4) is substantially greater than the first one.
The case of high activation energies is particularly attractive,
when E � 3ÿ6 eV and conventional thermal ablation
necessitates very high temperatures. The effect is strongly
reliant on the laser pulse intensity and the thermal relaxation
time tT. Examples of practical computations can be found in
Refs [97 ± 101].

For a laser pulse approximately 10 ns long (a typical value
for excimer lasers), photophysical ablation occurs, for
instance, when E � � 1ÿ1:5 eV and E � 3ÿ6 eV. In this
case, however, the relaxation time tT should range into the
hundreds of picoseconds. If the relaxation time tT amounts to
tens of picoseconds, only a thin surface layer is photophysi-
cally removed at the beginning of the pulse, whereas the
subsequent ablation takes place in a purely thermal way [101].
In the case of a short laser pulse, the effect of photophysical
ablation is amply manifested even for a relatively low
activation energy (E � 1:5 eV), provided that the condition
E �5E is nevertheless retained in this case (see Fig. 14).

According to Aksenov et al. [104], it is not improbable
that the photophysical mechanism is observed in the laser
ablation of porous silicon. As shown in that paper, the rate of
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Figure 14. Layer thickness of a material removed in one pulse for the
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310 S I Anisimov, B S Luk'yanchuk Physics ±Uspekhi 45 (3)



ablation of porous silicon by the radiation with a wavelength
of 1064 nm was insignificant when employing a pulse with an
energy of 400 mJ cmÿ2. Meanwhile, adding a 532-nm
synchronous pulse with an energy of only 10 mJ cmÿ2

resulted in a sharp increase of the photoexcitation of porous
silicon and in the acceleration of ablation. The authors of
Ref. [104] believe to have observed the efficient laser ablation
of excited states.

Additional possibilities for the lowering of the activation
energy (including that of excited states) are related to the
stresses developing in solids heated by a laser [105, 106]. Bulk
processes due to photochemical reactions are not ruled out
either [107 ± 110]. The analysis of nonthermal ablationmodels
is made difficult because detailed experimental data on the
dynamics of the process are unavailable. Meanwhile, integral
curves can be equally well explained proceeding from
different models.

6. Gas dynamics of three-dimensional vapor
expansion in laser ablation

So far we have considered one-dimensional vapor expansion
in the laser evaporation of condensed materials. This
consideration corresponds to the initial stage of the process,
when the vapor layer thickness is considerably smaller than
the focal spot dimension. As the vapor expands, its motion
acquires a three-dimensional character. The vapor plume
shape and the angular distribution of the vaporized material
flow depend on the evaporation mode and the focal spot
shape. They in turn determine the thickness profile of the film
produced during laser-induced evaporation.

The issue of the angular distribution of expanding laser-
ablation products has been comprehensively studied both
experimentally and theoretically (see, for instance,Refs [111 ±
119]). But almost without exception in the theoretical works
the vapor expansion was assumed to be isothermal, which is
inconsistent with both the experiment and numerical calcula-
tions [118 ± 122]. An adiabatic expansion, which is closer to
reality, was investigated in paper [116]. However, the analysis
made in that work pertains to the special case of an axially
symmetric vapor flow, which is not necessarily the case in
experiments.

It is pertinent to note that the initial symmetry of a
vaporized plume is not `forgotten' in the course of its
expansion. Quite the reverse. As is evident from what
follows, the plume shape late in the expansion and the film
deposition profile are determined by precisely the initial
asymmetry. For instance, the experiments of Refs [113 ± 115]
and many others show that an elliptic focusing spot results in
the production of an elliptically shaped spot of the material
deposited on the substrate, the axes of the latter being turned
through an angle of 90� (the so-called flip-over effect). It is
clear that effects of this kind cannot be explained in the
context of an axially symmetric model.

We note that the spatial structure of the vapor (plasma)
plume produced at the surface of a solid target under the
action of a nanosecond laser pulse was studied in detail as
far back as the 1960s. A dense (n > 1021 cmÿ3) plume of
vaporized material was found (see, for instance, Ref. [118])
to form immediately at the target surface, with its
dimension increasing with time. The increase in plume
dimensions is primarily related to the evaporation of the
target material and slows down abruptly after the pulse
termination. Then the apparent boundary of the dense

plume begins to move back to the surface due to the free
expansion of outer layers.

We consider now the vapor plume expansion in greater
detail. Since the vaporized material density is high, the vapor
motion will be described by gas dynamics equations. As
shown by Basov et al. [118], when the radiation intensity is
high enough the vapor plume is surrounded by a tenuous
plasma shell whose outer layer is made up of electrons, and
the inner one of ions. Because of its small mass, the plasma
shell has almost no effect on the expansion dynamics of the
dense core.

The investigation of three-dimensional vapor expansion
described below is based on the particular solution of gas
dynamics equations, which describes the flow with a uniform
deformation [123]. One-dimensional flows of this type (the
expansion velocity is proportional to the distance from the
center of symmetry) were considered in Ref. [124]. The
general three-dimensional case was investigated in Ref. [123];
it was shown that the system of gas dynamics equations may
be reduced under specific conditions to a system of ordinary
differential equations which describes the motion of a probe
particle in a nine-dimensional space. A similar result was later
presented in Ref. [125]. In several specific cases, the system of
equations obtained in Ref. [123] was integrated by analytical
[128] or numerical [116, 126, 127, 129] techniques. A
qualitative investigation of this system of equations was
performed in Ref. [130].

Particular solutions of the equations of the type under
consideration can be obtained for a broad class of initial
conditions. The simplest of these solutions have sometimes
been employed in the analysis of experimental data on laser-
assisted plasma heating and laser ablation [114, 117, 126]. In
this case, the temperature in the plume was usually presumed
to be coordinate-independent. As noted above (see also
Ref. [113]), this formulation of the problem is not quite
correct. Since our prime interest here is with the vapor
motion after the termination of a laser pulse, the assumption
that the vapor flow is isentropic, which was adopted in
Ref. [116], seems to be closer to reality and more correct
from the physical standpoint. We will adhere to this
formulation of the problem.

6.1 Dynamics of vapor plume expansion
Let us suppose that the plume formation time (which is close
to the laser pulse duration) is far shorter than its expansion
time. For this reason, the plume expansion in vacuum can be
considered independently of its formation. We consider the
focal spot to be elliptic in shape with semiaxesX0 andY0. The
expansion of a vaporized material plume can be modeled on
the adiabatic expansion of a three-axial gas ellipsoid whose
initial semiaxes are X0, Y0, and Z0 � ctl, where tl is the laser
pulse duration, and c is the initial velocity of sound in the
vaporized material.

The ellipsoid expansion is described by the gas dynamics
equations

qr
qt
� div �rv� � 0 ;

qv
qt
� �vH�v� 1

r
Hp � 0 ; �6:1�

qS
qt
� vHS � 0 :
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The vaporized material is described by the equation of
state of an ideal gas with an adiabatic index g � cp=cv. The
particular solution of Eqns (6.1) of interest to us is of the form

ri�t� � Fik�t� rk�0� ; i � x; y; z : �6:2�
Here ri�t� are the coordinates of a gaseous particle, with a
summation being taken over the recurrent indices. If the
ellipsoid rotation is neglected, the Fi k�t� matrix takes on a
diagonal form

Fi k �

X�t�
X0

0 0

0
Y�t�
Y0

0

0 0
Z�t�
Z0

0BBBBBB@

1CCCCCCA : �6:3�

For adiabatic gas motion of the form (6.2), the system of
gas dynamics equations (6.1) can be shown to reduce to a
system of ordinary differential equations [130], provided that
the gas density and pressure can be represented as follows

p�r; t� � h�t�H�w� ; r�r; t� � f �t� dH
dw

;

w � gi k ri�0� rk�0� ; �6:4�
f �t� � A detÿ1 Fi k ; h�t� � Bdetÿg Fi k ;

where A and B are the constants, and gi k is a constant
symmetric matrix.

We rearrange Eqns (6.1) with allowance made for
expressions (6.2) ± (6.4) and arrive at the system of ordinary
differential equations for the matrix elements X�t�, Y�t�, and
Z�t�, which is conveniently written as the system of equations
of the probe particle motion in classical mechanics:

�X � ÿ qU
qX

; �Y � ÿ qU
qY

; �Z � ÿ qU
qZ

; �6:5�

U � 5gÿ 3

gÿ 1

E

M

�
X0Y0Z0

XYZ

�gÿ1
;

E � �gÿ 1�
�
p�r; 0� dV ; M �

�
r�r; t� dV :

Thenwewrite down the initial conditions for the system of
equations (6.5):

X�0� � X0 ; Y�0� � Y0 ; Z�0� � Z0 ; �6:6�
_X�0� � _Y�0� � _Z�0� � 0 :

When writing the initial conditions (6.6) we imply that the
initial kinetic energy of the vapor is far less than its thermal
energy.

In the general case Eqns (6.5) should be solved numeri-
cally. Examples of numerical integration of such equations
can be found in papers [114, 116, 117, 125 ± 127]. As shown in
Ref. [128], for g � 5=3 [in terms of the equations of mechanics
(6.5) this corresponds to a field potential which is a
homogeneous function of coordinates of the degree ÿ2] the
system of equations (6.5) possesses an additional integral
which in many cases permits this system to be integrated in
quadratures.

We now turn to the numerical integration of the system of
equations (6.5). To do this we select the coordinate axes in

such a way thatX0 5Y0. In other words, the length of longest
semiaxes of the initial gas ellipsoid will be denoted as X0. We
introduce the dimensionless variables

x � X

X0
; Z � Y

X0
; z � Z

X0
; t � tb 1=2

X0
;

Z0 �
Y0

X0
; z0 �

Z0

X0
; b � �5gÿ 3� E

M
:

Then the equations of motion (6.5) and the initial conditions
(6.6) may be rearranged to give

x�x � Z�Z � z�z �
�
Z0z0
xZz

�gÿ1
;

x�0� � 1 ; Z�0� � Z0 ; z�0� � z0 ; �6:7�
_x�0� � _Z�0� � _z�0� � 0 :

In the dimensionless variables the energy integral is
written as

1

2
� _x 2 � _Z 2 � _z 2� �U�t�

b
� e � const ;

where e � �gÿ 1�ÿ1. In the special case when g � 5=3 there
occurs an additional integral of the system of equations (6.5):

x 2 � Z 2 � z 2 � 3t 2 � 1� Z 2
0 � z 20 :

The sought solution depends on three parameters: Z0, z0,
and g. From Eqns (6.7) it immediately follows that the gas
plume in its late stage expands through inertia. In this case,
the ratios between the lengths of ellipsoid axes for t!1,
which define the plume shape, tend to some limiting values.
We can conveniently introduce the ratios kZ�t� � Z�t�=x�t�
and kz�t� � z�t�=x�t�, which characterize the plume shape at
a point in time t. Examples of the dependences kZ�t� and kz�t�
for different values of the parameters Z0, z0, and g, which
result from the numerical solution of Eqns (6.5), are presented
in Fig. 15.

Figure 15a shows the time evolution of the plume shape
for different values of the adiabatic index g and fixed values of
Z0 and z0. Notice that for g < 5=3 the ratio between the
semiaxes kZ�t� peaks for a finite value of t and approaches the
asymptotic value kZ�1� from above. For g5 5=3, the
function kZ�t� increases monotonically with t to attain the
limiting value kZ�1� when t � 103. The kz�t� function
exhibits a similar behavior (Fig. 15d).

A family of kZ�t� curves corresponding to different
values of Z0 and fixed values of g and z0 is plotted in
Fig. 15b. For t � 10, the kZ�t� function attains a value
kZ � 1. At this point in time, the expanding plume becomes
symmetric about the z-axis. Subsequently, the kZ function
continues to increase, i.e. the plume expands faster in the
direction of the stronger initial pressure gradient (in the
direction of the short axis of the focal spot). As a result, the
spot deposited is found to be as if rotated through an angle of
90� relative to the focal spot. This experimentally discovered
phenomenon has come to be known as the `flip-over effect'.
Clearly, the same rotation effect should be observable for a
focal spot of any shape possessing an nth-order axis of
rotation Cn. In this case, the angle of rotation is 180�=n. In
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particular, this angle is equal to 90� for a rectangular focal
spot (like for an ellipse), 45� for a square, and 60� for an
equilateral triangle. Effects of this kind were observed by
Kelly and Miotello [132].

The family of curves in Fig. 15c serves to illustrate the
effect of the z0 parameter on the character of plume expansion
in the xy-plane. One can see that this effect is insignificant for
the values of Z0 and g specified above: varying z0 by a factor of
30 causes kZ to change by only a few percent. As g increases
and Z0 decreases, this influence becomes more significant.
Figure 15e demonstrates a strong dependence of the kz�t�
function on the parameter z0, and Fig. 15f a weak dependence
of kz�t� on Z0.

To summarize, it is valid to say that the plume expansion
is a superposition of two weakly interacting motions. For a
given adiabatic index g, the plume expansion in the direction
of the y-axis is determined by the parameter Z0, and in the
direction of the z-axis by the parameter z0. For t � 102ÿ103,
both motions become inertial and the ratios between the
lengths of ellipsoid axes remain approximately equal to their
asymptotic values. These values are given in Ref. [129] for a
broad range of parameter values.

6.2 Deposited film profile
The simple model considered above furnishes an opportunity
to estimate, without conducting complex three-dimensional
gas dynamics calculations, the manner in which the focal spot
shape influences the spatial structure of vapor flow and the
thickness profile of the film produced in the condensation of
the vapor on the substrate. All one has to do is to calculate the
flux of material at the point of location of the substrate, i.e.
for z � zs. This flux is defined as j � rvz, where the density
and the corresponding velocity component are found from
the particular solution of the gas dynamics problem, derived
in the previous section.

Integrating the flux j with respect to time from zero to
infinity gives the distribution of the deposited mass. For the
inertial stage of expansion, such a calculation leads to the
formula [129]

h � h0

�
1� 1

p
tan2 yx � q 2

p
tan2 yy

�ÿ3=2
: �6:8�

Here, h0 is the peak film thickness at the deposition center, the
quantities p and q are defined as p � 1=kz�1� and
q � 1=kZ�1�, and the angles yx � arctan �x=zs�, yy �
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arctan �y=zs�. For small angles yx and yy, the above equation
coincides with the commonly used asymptotic formula

h�yx; yy� � h0 cos
m yx cos n yy ; �6:9�

wherem � 3=p 2 and n � 3q 2=p 2. As shown by Tyunina et al.
[133], formula (6.8) provides an adequate description of the
real deposition profile.

6.3 Dynamics of a multicomponent plume.
Matrix-assisted evaporation
In recent years, considerable study has been given to the
technique of evaporation of large molecules from specially
prepared matrices Ð the so-called MALDI technique
(Matrix-Assisted Laser Desorption and Ionization). This
technique is employed for the quick mass analysis of very
heavy biomolecules (up to several hundred thousand daltons)
[134, 135]. The idea underlying this technique is simple
enough. Large molecules are impossible to vaporize directly
using a laser due to their rapid thermal and photochemical
decomposition. However, it is possible to prepare a low-
concentration solution of the high-molecular substance and
then deposit the solution in the form of a solid matrix. For
solvents use is made of low-molecular highly volatile organic
substances with a molecular mass of the order of a hundred
daltons.

The matrix preparation technique has been thoroughly
elaborated to date [136]. In the laser evaporation of the
matrix, heavy biomolecules are entrained by the low-
molecular vapor to find themselves undecomposed in the
gas phase. This permits highly sensitive optical methods to be
employed for the spectroscopic analysis of an isolated
biomolecule, which is important for many applications, for
genetic engineering in particular [137].

Omitting the details, it is valid to say that the vapor plume
obtained in the matrix evaporation is a mixture of the vapor
of heavy and light molecules. Investigating the expansion
dynamics of a multicomponent vapor plume is an intricate
task. Special solutions of gas dynamics equations nevertheless
make it possible to satisfactorily describe some of the
characteristics of this vapor and supply an explanation for
several qualitative effects, among them the sharpening effect

in the expansion of heavy molecules (the heavy vapor
propagates as a thin elongated jet through the light vapor)
[138, 139]. The sharpening effect is clearly visible in the
photographs of expansion of light and heavy vapor plumes
(Fig. 16).

As before, the formation time of the initial vapor plume
will be assumed to be far shorter than its expansion time. We
also suppose that the heavy vapor (a high-molecular protein)
has no effect on the expansion dynamics of the vapor of the
light matrix material. In this case, the expansion of the light
vapor can be described by taking advantage of the above
special solutions of gas dynamics equations. This vapor will
be treated as a three-axial ellipsoid. The quantities related to
the light vapor will be designated by the subscript `l'.

In accordance with Eqns (6.5), the motion of the plume
boundaries is described by the equations

�Xl � ÿ qU
qXl

; �Yl � ÿ qU
qYl

; �Zl � ÿ qU
qZl

; �6:10�

U � 5gl ÿ 3

gl ÿ 1

El

Ml

�
Xl0Yl0Zl0

XlYlZl

�glÿ1
;

in which Xl0,Yl0, and Zl0 are the initial coordinates of the
plume, and gl is the adiabatic index for the light vapor. The
initial conditions are of the form

Xl�0� � Yl�0� � R0 ; Zl�0� � Zl0 ; �6:11�
_Xl�0� � _Yl�0� � 0 ; _Z�0� � vz0 :
We will consider isentropic solutions with parabolic

density and pressure profiles, specifically

rl�r; t� �
2

p 3=2

G�a� 5=2�
G�a� 1�

Ml

XlYlZl

�
cl�x; y; z; t�

�a
; �6:12�

cl � 1ÿ x2

X 2
l

ÿ y 2

Y 2
l

ÿ z 2

Z 2
l

; a � 1

gl ÿ 1
;

where G�z� is the gamma-function.
The solutions (6.10) and (6.11) are a good approximation

to the expansion dynamics of a real plume (see Figs 17a and
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Figure 16. (a) Schematic diagram of the experiment and expansion geometry in the matrix-assisted evaporation. A heavy protein marked with dye

molecules (a molecular mass of 29062 daltons and a TMRdye with amolecular mass of 444 daltons) was solved in the light material of a 3-HPAmatrix (a

molecular mass of 139 daltons). The matrix was evaporated under radiation of a KrF excimer laser (an elliptic beammeasuring 3.1 mm by 3.6 mm). The

laser-induced fluorescence of the substance was initiated with the aid of the second laser with a variable time delay after the vaporizing laser pulse. (b) Top:

fluorescence of the matrix material under radiation of an XeCl excimer laser (308 nm), recorded with an ICCD camera at the points in time 5, 10, 16, and

20 ms. Bottom: fluorescence of the dyed protein excited by the second harmonic of anNd :YAG laser (532 nm) at the points in time 5, 10, 20, 40, and 60 ms.
Each photograph was obtained with a separate vaporizing laser pulse [138].
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17b). In the computations it was assumed that R0 � 1:8 mm,
which corresponds to the laser beam radius in the experiments
carried out by Puretzky et al. [138]. The parameters Zl0, vz0,
and vl �

�������������
El=Ml

p
were determined from the best fit by the

least square technique. The parameters vz0 and vl are in
essence constants rather than adjustable parameters. Their
values derived from the experiment were vz0 � 6� 104 cm sÿ1

and vl � 3:3� 104 cm sÿ1. In principle, the parameterZl0 (the
vapor plume thickness at the instant of termination of a laser
pulse) can also be found from independent measurements.
TheZl0 � 100 mmvalue determined from the least square fit is
in good agreement with the theoretical estimate [116].

Apart from the dynamics of plume boundary motion,
which is similar for isothermal and isentropic plumes, of our
interest is to verify the applicability of the parabolic spatial
profiles inherent in precisely the isentropic solution. The
laser-induced fluorescence intensity signal measured in the
experiments [138] is proportional to the local density, i.e. the
quantity defined by formula (6.12). For a polyatomic gas
whose adiabatic index is close to unity [i.e. 1=�gl ÿ 1�4 1],
formula (6.12) can be simplified taking advantage of the well-
known relation �1ÿ e�1=e � eÿ1 for e5 1 to give a Gaussian
profile

rl / exp

�
ÿ 1

gl ÿ 1

�
x 2

X 2
l

� y 2

Y 2
l

� z 2

Z 2
l

��
: �6:13�

Figure 18 shows the axial and radial intensity profiles of
the emission of the low-molecular vapor plume and their

approximation by formula (6.13). The adiabatic index gl is
easily determined from the experimental diagram plotted in
the coordinates: the logarithm of emission intensity as a
function of the parameters z 2 and r 2. The corresponding
analysis of measurement results reveals that gl � 1:1 at the
initial stage of plume expansion. After that the adiabatic
index increases with time to attain a value gl � 1:2 at the point
in time t � 20 ms, testifying to the vapor cooling during the
plume expansion. Notice that the isothermal solutions [117]
are also described by the Gaussian profiles of the type of
formula (6.13) when it is formally assumed that gl � 3 in this
formula. For a vapor plume obtained by matrix evaporation,
these isothermal profiles differ greatly from the experimental
ones.

We now turn to the description of the expansion dynamics
of heavy vapor. It can be inferred that the expansion is due to
collisions with light molecules. (We are reminded that the
number density of heavy molecules is very low and the effects
stemming from collisions between the heavy molecules can be
neglected.)

In the hydrodynamic approximation the expansion
dynamics of the heavy vapor is described by the equations

qrh
qt
� div �rhu� � 0 ; �6:14�

qu
qt
� �uH�u � b�vÿ u� ; b � m

M
nc : �6:15�
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Here, v and u are the expansion velocities of light and heavy
particles, respectively, the subscript `h' designates the quan-
tities relating to the vapor of heavy particles,m andM are the
masses of light and heavy particles, and nc is the collision
frequency. The main simplification of the model is that this
quantity is assumed to be constant, so that b � const.

We consider the special solution of the problem (6.14),
(6.15) under the inference that the velocity distribution of the
heavy molecules is a linear function of coordinates and their
number density corresponds to a parabolic profile similar to
that defined by expression (6.12). In this case, the problem
(6.14), (6.15) transforms to a system of ordinary differential
equations describing the motion of the boundaries of the
heavy plume:

�Xh � b
�
Xh

Xl

_Xl ÿ _Xh

�
;

�Yh � b
�
Yh

Yl

_Yl ÿ _Yh

�
; �6:16�

�Zh � b
�
Zh

Zl

_Zl ÿ _Zh

�
:

The system of equations (6.16) is solved with the initial
conditions similar to conditions (6.11). The parameters
appearing in this system are also determined by means of a
least square fit. From the fit it follows that the initial radius of
the heavy plume (the protein) is somewhat smaller than the
laser beam radius. An interpolation of the experimental data
by Puretzky et al. [138] to the point in time t � 0 gives
Xh0 � Yh0 � 0:1 cm � R0=1:8. To avoid the influence of the
initial vapor asymmetry on the sharpening effect, we take
Zh0 � Zl0=1:8. In this case, the initial vapor asymmetry z=r is
similar for the light and heavy vapors. Two other parameters
derived from the fit are b � 3� 104 sÿ1 and uz0 �
5:5� 104 cm sÿ1.

Referring to Fig. 17, for the above parameter values the
model provides an adequate description of both the light and
heavy plume expansion and a correct description of the
dynamics of development of the asymmetry in expansion
velocities. The time evolution of the relative dimensions z=r of
the light and heavy plumes is plotted in Fig. 17c. The
experiment and the calculations suggest that the z=r ratio for
the light plume becomes practically constant for t5 10 ms,
which is testimony to the inertial expansion. Meanwhile, the
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expansion of the heavy plume is attended with a change in its
asymmetry up to t � 30 ± 40 ms. According to Eqns (6.16), this
corresponds to the characteristic time (of the order of 1=b) of
the transient process.

The sharpening effect may be characterized by the
parameter

K � Zh=Rh

Zl=Rl

which is the measure of relative `elongation' of the heavy and
light vapor forms. One can see from Figs 16 and 17d that the
parameter K increases during the transient period and then
tends to saturate. The experimental dependences r�t� and z�t�
in Figs 17a and 17b show that the initial radial expansion
velocities of the heavy and light vapors are close to zero, while
the normal velocities are nonzero. In this case, to within the
experimental error uz0 � vz0, i.e. the initial velocities do not
depend on molecular mass. This is consistent with the
measurements of Beavis and Chait [140] who found that the
heavy molecules which spread during matrix vaporization
possess velocities of the order of 105 cm sÿ1 irrespective of
their mass.

From the physical standpoint, the result obtained in paper
[140] implies that a hydrodynamic flow with a common mass
velocity of the order of the velocity of sound sets in early in the
expansion of a very dense vapor: vz0 � cs � 105 cm sÿ1. Such
a flowmay also originate through the effect of the solidmatrix
wall Ð `the gun effect' [141, 142]. In this case, vz0 �

�����������
cvDT
p

,
where DT � 103 K is a typical value of the initial vapor
temperature in the laser evaporation from matrices. For
typical values of the specific heat (heat capacity) approach-
ing cv � 1 J gÿ1 Kÿ1, this leads to a characteristic velocity
vz0 � 105 cm sÿ1.

The sharpening effect is easily accounted for [138, 139]. As
implied by the Euler equation, the driving force for the
expansion of light vapor (the matrix) is the pressure gradient
in the plume. The plume therefore accelerates more strongly
in the z-direction which corresponds to the stronger gradient.
The vapor density in it drops during expansion to make the
molecular mean free path comparable with the plume
dimensions, i.e. collisions cease to occur and the vapor
expansion passes into the inertial mode [76]. The estimates
submitted in papers [138, 139] show that the light vapor
attains this mode in a time period of tf � 10 ms. Thereafter the
asymmetry z=r of the light plume `freezes', which is illustrated
in Fig. 17c.

The velocity of motion of the heavy vapor changes due to
collisions with the light one [the `force of friction' entering
Eqn (6.15) is proportional to the difference ofmass velocities].
The collisions between light and heavy particles occur for a
longer period of time than the collisions of light particles
between themselves, which is due to the greater difference in
collision cross sections: sh=sl � �M=m�2=3. In the experimen-
tal conditions of Ref. [138] the corresponding cross sections
differed by a factor of 40. That is why the change in symmetry
of the heavy vapor takes place during a transient period
ttr � 1=b which was approximately five times longer than the
time tf in the context of experiments by Puretzky et al. [138].
The acceleration of the heavy plume diminishes as the overlap
of the heavy and light vapors decreases. This is easily seen
from Eqns (6.16), where the corresponding overlapping
factors appear as multipliers of the velocity components of
the light vapor. The effect of acceleration of the heavy vapor

terminates in a time period ttr � 1=b. The attainable final
velocities of the inertial heavy-vapor expansion depend both
on the initial velocities and the initial plume geometry.

Simple estimates [138, 139] show that, in order for the
sharpening effect to occur, two requirements should be
fulfilled. First, btf < 1. Second, the initial `velocity asymme-
try' of the expansion (i.e. the ratio between the initial
expansion velocities in the z- and r-directions) should exceed
the initial `geometric asymmetry' (i.e. the radial-to-axial
dimension ratio for the initial plume). The second condition
is easily satisfied in the laser evaporation of almost all
multicomponent substances, whereas the first condition is
safely fulfilled only when the heavy and light particles differ
greatly in mass. That is why the sharpening effect is strongly
pronounced when large biomolecules are evaporated from
low-molecular matrices (the heavy vapor in the photographs
given in Fig. 16 extends into a thin jet). Analogous, though
less pronounced, stoichiometric changes are observed, for
instance, in the deposition of high-temperature supercon-
ducting ceramics [112] (the sediment at the center is enriched
with the heavier component).

6.4 Vapor condensation. Formation of nanoclusters
In conclusion we shall consider one more significant effect
observed in the expansion of vapor produced by laser-driven
material ablation. The case in point is the formation of
nanoclusters in the plume of laser ablation products [143 ±
158]. This is a readily controllable process which shows
promise for many technological applications [151, 159]. We
will enlarge on some of the physical properties of this process.

In essence we are dealing with the kinetics of rapid phase
transitions of the first order Ð a problem which has not been
adequately studied. A variety of features in the nanocluster
production have yet to be elucidated, and several parameters
important for understanding the physics of the phenomenon
are hard to determine experimentally. Suffice it to say that
typical cooling rates of the vapor in its expansion in the plume
of laser ablation products amount to 1010 ± 1011 K sÿ1. The
classical physics of phase transitions has never faced with so
strongly nonequilibrium condensation conditions. That is
why theoretical modeling remains an important source of
information on a number of characteristics of this process.

The first theoretical analysis of condensation dynamics in
a rapidly expanding vapor was performed by Yu P Ra|̄zer in
1960 [160]. He considered the self-consistent problem of
vapor condensation during expansion, as applied to the
problem of cosmic dust formation. A constituent of the
analysis is the classical theory of nucleation, which was
developed in Refs [161 ± 164]. This theory of dynamic
condensation of expanding vapor will be referred to as the
Zel'dovich ±Ra|̄zer (ZR) theory. This theory is outlined in
detail elsewhere [76].

The ZR theory faces some problems when describing
the characteristic condensation time scales, and in this
connection it was subjected to criticism in Ref. [153].
Meanwhile, an advantage of the ZR theory is a clear
revelation of the physics of the process, and it also
accounts correctly for the characteristic scale dimension of
the resultant clusters. Not denying the necessity of improv-
ing some of the details, we therefore treat the ZR theory as
a good underlying model for the condensation. The ZR
theory was applied to the nanocluster production in laser
ablation in Refs [165 ± 168]. Below we consider the basic
results of these investigations.
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From the theory of first-order phase transitions (see, for
instance, Refs [164, 169 ± 171]) it is known that the main
driving parameter of condensation is the supercooling
parameter

y � Teq ÿ T

Teq
; �6:17�

where T is the vapor temperature, and Teq is the equilibrium
temperature along the binodal. As the supercooling increases,
the y parameter approaches the critical value yc correspond-
ing to the spinodal. In the classical nucleation theory the case
is considered when the y parameter is not very close to yc. In
this case, the condensation proceeds in two well-defined
stages: (i) nucleation (the formation of a critical nucleus),
and (ii) the growth of a supercritical nucleus. In the frame-
work of the ZR theory these processes are described as
follows.

Let there initially exist a plume of laser ablation products.
In order not to overcomplicate the description we suggest that
the plume is spherical and has density r�r; t� and temperature
T�r; t� profiles corresponding to the isentropic model con-
sidered in Section 6.1. The plume will also be assumed to be a
monoatomic gas, i.e. the adiabatic index g � 5=3. In this case,
one finds

r�r; t� � r0�1ÿ x 2�3=2Cÿ3=2�t� ; r0 �
8

p2
M

R 3
0

; �6:18�

T�r; t� � T0�1ÿ x 2�Cÿ1�t� ; T0 � 16

15

m
Rg

E

M
; �6:19�

where x � r=R�t� is the Lagrangian coordinate �04x4 1�,
Rg is the molar gas constant, and m is the atomic mass of the
vapor.

The plume expansion obeys the law�
R

R0

�2

� C�t� � 1� 2
u0
R0

t�
��

u0
R0

�2

� 16

3

E

MR 2
0

�
t 2 :

�6:20�
Here,M is the total vapor mass, E is the initial internal vapor
energy, R0 is the initial plume radius, and u0 is the initial
velocity of vapor expansion.

The main supposition required for the subsequent
analysis is that the liquid droplets will be thought to be
moving together with the vapor. In this case, the condensa-
tion may be treated independently for each particle with a
fixed Lagrangian coordinate. According to the hypothesis of
the ZR theory, for a small degree of condensation it is possible
to neglect the effect of this process on the plume expansion.
Then, for any coordinate x the variation of specific vapor
volume can be represented as

1

V

dV

dt
� 3

2

1

C
dC
dt

: �6:21�

Initially, the vapor expansion proceeds along the Poisson
adiabat pV g � const. During expansion the vapor cools and
comes into the saturation (the Poisson adiabat crosses the
saturation adiabat defined by the Clausius ±Clapeyron
equation). The condensation sets in from this point in time.
The corresponding temperature is defined as

Tc � qF�a� ;

where q is the heat of vaporization expressed in kelvins, and
F�a� is the smaller root of the transcendental equation

Fÿ3 exp
�
ÿ 1

F

�
� a � B

V0

�
q 2

TsT0

�3=2

; �6:22�

in which Ts � 300 K is the normalization temperature,
B � RgTs=mps, and ps is the preexponential factor in the
equation for the saturation vapor pressure. The values of q
and ps for different materials are compiled in handbooks (see
lists of references in papers [32, 33]).

The point in time tc depends on the coordinate x; the
saturation wave travels from the plume periphery to its
center. The propagation of the front r � rc�t� of this wave
obeys the equation

rc
R
�

�������������������������
1ÿ Tc

T0
C�t�

r
: �6:23�

The condensation comes to a halt due to the effect of
`quenching': particle collisions in a vapor expanding into
vacuum terminate at some stage of the process (for more
details, see Ref. [76]). Strictly speaking, the kinetic equation
should underlie the consideration of the effect of quenching,
but various estimates may also be obtained on the basis of the
hydrodynamic description [44, 76, 160, 165]. These estimates
agree to a numerical factor of the order of unity. For typical
parameters of a plume produced in laser ablation, the
quenching time is several microseconds long.

During condensation the latent heat of evaporation is
released. The vapor temperature is therefore determined by
the competition of two effects: the cooling related to the
plume expansion, and the heating due to vapor condensation.
Following Ra|̄zer [160], the corresponding equation can be
written in the adiabatic approximation proceeding from the
local energy balance in the two-phase vapor ± liquid system.
We now define the degree of vapor condensation x as the ratio
between the number of molecules in the liquid and the total
number of molecules. Then, the adiabatic approximation
leads to the equation

�1� x�dT
dt
� �1ÿ x� T

C
dC
dt
�
�
2

3
qÿ T

�
dx

dt
; �6:24�

T
���
t� tc
� Tc :

The equation for the equilibrium temperature Teq�t� is
also determined from the adiabatic approximation (for more
details, see paper [165]). It is of the form

V0C 3=2 �
�
1ÿ 2q

2qÿ Teq

�
Tc ÿ Teq

Tc
� 3

Teq

q
ln

Teq

Tc

��
� B

�
Teq

Ts

�3=2

exp
q

Teq
: �6:25�

In this case, the degree of equilibrium vapor condensation
may be found from the equation

xeq � 2q

2qÿ T

�
Tc ÿ T

Tc
� 3

T

q
ln

T

Tc

�
; �6:26�

where xeq�t� � xeq
ÿ
T � Teq�t�

�
. One can see from the last

equation that in the case of unlimited vapor expansion under
nearly equilibrium conditions (i.e. when the cooling is run
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sufficiently slow) the vapor should completely condense:
xeq
��
T! 0
! 1. In the case of rapid expansion, complete

condensation does not occur due to the quenching effect
[160].

Let us hypothesize that the clusters for a given Lagrangian
coordinate all have the same dimension, i.e. the coalescence
[169] does not yet develop, and every cluster contains g � g�t�
atoms. Let n � n�t� be the number of nuclei (per atom of the
vapor). Then, the degree of vapor condensation is defined as
x�t� � n�t� g�t�. Accordingly, for the vapor condensation rate
we obtain the differential equation

dx

dt
� g

dn
dt
� n

dg

dt
; x

���
t� tc
� 0 : �6:27�

The first term in the last equation describes the variation
of the degree of vapor condensation due to the change in the
number of nuclei, and the second one due to the variation of
the cluster dimension. It now remains to write out the
equations for the nucleation rate dn=dt and the nucleus
growth rate dg=dt. The first equation is determined from the
quasi-stationary solution of the kinetic equation and is of the
form [165]

dn
dt
� kn0�1ÿ x��1ÿ x 2� 3=2Cÿ3=2 exp

�
ÿTn

T

1

y 2

�
; �6:28�

n
���
t� tc
� 0 :

Notice that the preexponential factor in this equation is
defined to a factor of the order of unity [164]. After Ra|̄zer
we assume this factor to be equal to

kn0 � 4
r0
rl

�������
2s
pm

r
: �6:29�

Wewrite the second term in Eqn (6.27) supposing that the
nucleus growth proceeds in the kinetic regime, the accomoda-
tion coefficient is equal to unity, and the vapor and nucleus
temperatures are the same. In this approximation, the
corresponding equation governs the mass balance between
deposited and vaporized atoms [165]:

dg

dt
� kg g

2=3
����
T
p
�1ÿ x��1ÿ x 2�3=2Cÿ3=2

�
�
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�
ÿ q

T
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��
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���
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� g0 : �6:30�

Here, the notation was used

a � 2sm
kBqrl
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4p
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���������
8kB
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r
;

�6:31�

where s is the surface tension coefficient, m is the mass of a
single atom, and rl is the density of the condensed cluster
substance.

The nucleation rate is an extremely sharp function of
supercooling and is proportional to

exp

�
ÿTn

T

1

y 2

�
;

and therefore the critical nuclei are `injected' into the
saturated vapor at the instant of time the supercooling
reaches its maximum. The corresponding instant of time
t � te can be determined from the equation [165]

1

Teq

dTeq

dt
� ÿ 1

C
dC
dt
�
�
2

3

q

Tp
ÿ 1

��
a
yp

�3
dn
dt
; �6:32�

where Teq is the equilibrium temperature, the parameter
y � yp � 1ÿ Tp�t�=Teq�t� and the nucleation rate dn=dt are
calculated along the Poisson adiabat T � Tp. The critical
nucleus dimension in this case is g0 � g�te� � �a=ymax�3.

Notice that the condition g4 1 is necessary for the
macroscopic description of nucleation. For typical para-
meters of a laser ablation plume (at the instant the laser
pulse terminates we have T0 � 7000 K and the specific
volume V0 � 300 cm3 gÿ1), the critical nucleus dimension g0
for different substances was 5 16 (Ge), 18 (Si), and 20 (C)
atoms [166]. As the T0 temperature increases, the critical
nucleus dimension decreases. In paper [153], for instance, it
was assumed that in silicon vapor g0 � 7 atoms.

Therefore, it is valid to say that three characteristic waves
propagate through the vapor (from the periphery to the
center): the saturation wave, the wave of nucleus `injection',
and the quenching wave. The propagation of these waves was
thoroughly considered in Refs [165, 166].

Having determined the point in time t � te, we conveni-
ently redefine the remaining initial conditions for this point in
time:

T
���
t� te
� Tp�te� ; g0 � g�te� � gmin ;

n
���
t� te
� n0 �

�te
tc

dn
dt

����
T�Tp�t�

dt ; x
���
t� te
� x0 � g0n0 : �6:33�

As a result, the vapor condensation problem reduces to a
system of four ordinary differential equations for four
unknown functions T�t�, x�t�, n�t�, and g�t�, with the initial
conditions prescribed for the point in time t � te. This system
was numerically integrated using the `Mathematica' package
[38]. Examples of such a solution covering the condensation
of silicon and carbon vapors are given in Ref. [166].

A disadvantage of the above-outlined approach is the
special parabolic form of the initial pressure and density
profiles. In order to analyze arbitrary initial conditions or
the condensation during the ablation in an ambient gas, one
has to solve numerically the equations of gas dynamics. This
problem was recently solved by Kuwata et al. [167], which
made it possible to verify the solutions with parabolic initial
density and pressure profiles, and also to investigate how the
initial distributions affect the dimension distribution function
of clusters being produced.

Different parameters which characterize the condensation
dynamics in the expansion of substances into vacuum are
given in Fig. 19 for rectangular initial pressure and density
profiles. Referring to Fig. 19a, it is seen that initially the
temperature T�t� follows the Poisson adiabat, approaches the
equilibrium temperature Teq at the cluster formation stage,
and lastly departs from the equilibrium temperature due to
the quenching effect late in the expansion. This behavior is
typical for the ZR theory [76, 160].

5 For silicon vapor it was supposed in the calculations [166, 168] that

T0 � 8000 K and V0 � 200 cm3 gÿ1.
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The variation of the supercooling parameter y�t� (Fig. 19b)
also corresponds to the ZR theory. Initially, the supercooling
increases to peak at the point in time t � te, then the
supercooling decreases in response to nucleation and the
temperature remains close to the equilibrium value for a
long period of time. Finally, as the quenching stage is
approached, the collision rate in the vapor lowers and the
supercooling builds up.

The degree x of condensation in the expanding vapor is
lower than the equilibrium one (Fig. 19c). The number of
clusters varies almost like a step function; the majority of
clusters is produced about the point in time t � te
(Fig. 19d). The cluster growth takes place from the instant
of critical nucleus creation to the instant of quenching.
Under typical conditions of plume expansion into vacuum,
the quenching sets in at the instant of time the cluster
contains several hundred atoms. The dynamics of cluster
growth is depicted in Figs 19e and 19f. All the results given
in Fig. 19 pertain to the plume center �x � 0�. The
nucleation dynamics for any Lagrangian coordinate is
calculated in a similar way.

With the knowledge of the g�x� and n�x� distributions, it is
possible to find the cluster dimension distribution. The
number of clusters produced over the interval dx is

dN � 4p
r0R

3
0

m
�1ÿ x 2�3=2 n�x� x 2 dx ; �6:34�

and the cluster dimension variation is defined as

dr � dr

dx
dx :

The distribution function sought is given by the formula

F�r� � ÿ dN

dr
� ÿ 32

p
M

m

n�x�x 2�1ÿ x 2�3=2
dr=dx

: �6:35�

Here dr=dx < 0, and therefore the function F �r� is positive.
The distribution function thus defined has a usual signifi-
cance: F �r� dr is the probability that a cluster will have
dimensions in the range between r and r� dr. Dividing F �r�
by the total number of clusters produced, it is possible to
normalize the distribution function:�1

0

F�r� dr � N � 32

p
M

m

� 1

0

�1ÿ x 2�3=2 n�x� x 2 dx : �6:36�

The dimension distribution function for silicon nanoclus-
ters, determined experimentally by Marine et al. [151], is
plotted in Fig. 20a. The results of the solution with parabolic
initial distributions found in Ref. [166] for three materials are
shown in Fig. 20b. For parabolic initial conditions, the
resultant distribution functions take a characteristic triangu-
lar form. The typical dimension of the clusters produced is
about 2 (Ge), 3 (Si), and 4 (C) nm. The characteristic width of
the distribution6 is Ddc � 0:6ÿ0:8 nm.

Figure 20c presents the solution of the corresponding
problem for rectangular initial density and pressure profiles
[167]. One can see from this figure that the distribution
function for the resultant nanoclusters is significantly
affected by the initial density and pressure distribution
profiles in the plume of vaporized material. For rectangular
distributions, the average cluster dimension and the distribu-
tion width are larger than for parabolic profiles.

Although the ZR theory does not contain adjustable
parameters, the cluster dimensions arrived at are in good
agreement with experimental data. No other ab initio models
allowing a correct description of resultant nanocluster
dimensions have come to our notice.

However the problem springs up with the time scale of the
process. In Ref. [145], the time-resolved mass spectroscopy
was employed to show that the smallest silicon clusters are
produced over the 150 ± 200-ns range and contain 18 ±
41 atoms, i.e. they exceed the critical dimension (16 atoms
for typical conditions of laser ablation), testifying to the onset
of condensation. This was also confirmed by the fact that the
clusters measuring about 1.5 nm were deposited on the
surface due to laser ablation studied in Ref. [145], which is in
reasonable agreement with the calculated data in Fig. 20: the
clusters of critical dimension are produced somewhere after
53 ns.
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Figure 19. Dynamics of germanium vapor condensation, obtained

through the numerical solution of the ZR model in combination with the

numerical solution of gas dynamics equations [167]. See text for the

explanations to the drawing.

6 Note that the silicon cluster distribution with a sharp peak, given in

Ref. [165], resulted from the insufficiently high accuracy of numerical

calculations. Because of its moderate accuracy, the code found a parasitic

root for one Lagrangian point, which corresponds to a lower dimension, in

lieu of the true one. In the course of cubic interpolation of the function r�x�
point by point, a region originated with a low magnitude of dr=dx, which
gave birth to the parasitic peak. The correct form of f �r� for silicon

clusters was found later in Ref. [166].
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Meanwhile, the experimental investigation of cluster
production dynamics employing time-resolved photolumi-
nescence reveals that clusters are produced only after a long
time delay. This latter depends on the pressure and the type of
a buffer gas and amounts to Dt � 200 ± 400 ms (ablation in an
atmosphere of He at a pressure of 10 Torr) andDt � 3 ms (Ar
at a pressure of 1 Torr) [152]. These values are two-three
orders of magnitude greater than the time found in Refs [165,
166].

The Rayleigh scattering technique gives similar values for
cluster production times [152]. This situation is not quite
trivial: the possibility of detecting a cluster by the Rayleigh
scattering technique depends on the photodetector sensitiv-
ity. For a sensitivity level of the order of one scattered photon
per cluster this dimension is about 2.0 nm [173, 174]. The time
delay in theRayleigh scatteringmay therefore be attributed to
the detection ability of the technique.

In Refs [173, 174], the delay in the occurrence of the
photoluminescence signal was ascribed to the time required
for cluster cooling. The point is that the cluster temperature at
the instant of `quenching' is higher than the melting
temperature, i.e. the clusters are liquid droplets. This
statement is consistent with the experiment by Le et al. [175].
We are reminded that the melting temperature falls sharply
with decreasing cluster dimension [176 ± 178]. Meanwhile, an
intense luminescence signal is observed from solid nanoclus-
ters [179 ± 181].

In the atmosphere of a buffer gas, the cluster cooling is
related to the cooling rate of a `fire ball' (as to the production

of a fire ball in laser ablation, see Ref. [182]). The correspond-
ing cooling time of the clusters depends on their dimension
and is defined by the formula [173, 174]

tc�rc� � 1

3

R 2
0

w
�p ln

T0

T1

�
G
�
ÿ 2

3
; �p ln

�
Tm0

T1

�
1ÿ rn

2rc

���

ÿ G
�
ÿ 2

3
; �p ln

T0

T1

��
: �6:37�

Here,R0 is the initial dimension of the fire ball, the parameter
�p � 1� n characterizes the temperature dependence of the
heat conduction coefficient:

K�T � � K1

�
T

T1

�n

;

w � K1
cpr1

is the thermal diffusivity at room temperature, T0 is the initial
cluster temperature, G�a; z� is the incomplete gamma-func-
tion:

G�a; z� �
�1
z

t aÿ1 exp �ÿt� dt ;

and the parameters Tm0 and rn characterize the dependence
of the melting temperature Tm of the cluster on its
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Figure 20. (a) Experimentally derived dimension distribution function for silicon nanoclusters in the ablation of silicon in an atmosphere of helium (4Torr)

for different pulse energy densities [151]. (b) Nanocluster dimension distribution function (expansion into vacuum) for three materials, which was derived

through the numerical solution for parabolic initial density and pressure profiles [166]. (c) Dimension distribution function for germanium nanoclusters

(expansion into vacuum), which was derived through the numerical solution for rectangular initial density and pressure profiles [167].
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dimension [176]:

Tm � Tm0

�
1ÿ rn

2rc

�
: �6:38�

The time required for cluster cooling, found in Refs [173,
174], is in good agreement with the time of the onset of
photoluminescence. One can therefore assume that clusters
are produced early in the process (in a time of the order of
several microseconds), but remain `invisible' for a long time
when observed by the Rayleigh scattering and photolumines-
cence techniques. In Ref. [158], an attempt wasmade to detect
the `invisible' clusters taking advantage of their decomposi-
tion by an additional laser pulse and the analysis of
decomposed products by the laser-induced fluorescence
technique. However, the cluster production time determined
in this way turned out to be about the same as the time found
in Ref. [152] previously. That is why the problem of correct
determination of nucleation time scale calls for additional
investigation. It is not improbable that nonisothermic
nucleation effects manifest themselves in the case involved
(i.e. one of the assumptions underlying the ZR theory is
violated). As shown in Ref. [171], a delay occurs in the
formation of a nucleus in the event of nonisothermic
nucleation, when the gas and nucleus temperatures are
different. In this case, the corresponding nucleus production
time may rise by two-three orders of magnitude.

We also note that the production of nuclei in the
expansion into vacuum is hard to study experimentally,
because this requires vacuum chambers of relatively large
size (theoretical estimates yield a value of the order of several
meters). In vacuum chambers of a conventional size (tens of
centimeters), attempts to observe the effects of nucleation in
the expansion into vacuum do not meet with success. Several
authors therefore believe that the clusters are not produced in
the expansion into vacuum at all. This is not true: cosmic dust
is produced in precisely matter expansion into vacuum (see
references in paper [168]).

In the majority of experiments, ablation is effected in the
atmosphere of an ambient buffer gas, which are rather hard to
simulate. The expansion of material into an ambient gas is
attended by many phenomena, such as the production of
shock waves (external and internal), the development of
Rayleigh ±Taylor instabilities, resulting in the mixing of
ablated material and the ambient gas, etc. In this case, one
has to solve gas dynamics equations.

7. Conclusions

In the foregoing we considered several thermal and gas
dynamics problems related to laser ablation. This review
does not pretend to be exhaustive. As already noted, laser
ablation has been the subject of several thousand publica-
tions, and it is unrealistic to cover all those works in a single
review. In the selection ofmaterial ourmain concern was with
the theoretical models that enable the derivation of quantita-
tive results allowing a direct comparison with experiments.

Although laser ablation is an extremely intricate process,
many aspects of this process are reasonably clear from the
physical standpoint and allow a rather close quantitative
description, which we endeavored to demonstrate in this
review. As a rule, the models employed in the theory of laser
ablation are reliant on complex nonlinear systems of partial
differential equations whose solution calls for the use of
numerical methods. This circumstance hampers the inter-

pretation of experimental results. Meanwhile, it is possible to
obtain a reasonably complete description of laser ablation by
invoking reduced models that involve the solution of systems
of nonlinear ordinary differential equations. The reduction
can be performed by taking advantage of the moments
method or special solutions of the partial differential
equations, the solutions possessing specific symmetry. These
models prove to be expedient for the quantitative analysis of
experimental results and allow a better understanding of the
physics of the phenomenon.

While on the subject of laser ablation mechanisms, it is
pertinent to note that some of them (the thermal model, the
gas dynamics model, and the two-temperature model) have
been solidly borne out in experiments. The possibility for the
realization of other mechanisms, the photophysical one for
instance, is still the subject of theoretical and experimental
research.

Material ablation is attended by a wide variety of
accompanying effects (vapor condensation, dispersion of the
liquid phase, etc.) many of which are of technological interest
(for example, thin film deposition, nanocluster production,
etc.). The reduced models prove to be advantageous for the
optimization of the corresponding technological processes.

Naturally, many phenomena are impossible to describe
with recourse to simple dynamic models which reduce to
ordinary differential equations. However, here too, the
reduced models are beneficial, because they allow a clearer
formulation of the physical problem.
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